<< Chapter < Page Chapter >> Page >

Supplemental material

I recommend that you also study the other lessons in my extensive collection of online programming tutorials. You will find a consolidated index at www.DickBaldwin.com .

Discussion

I have touched on collisions in one dimension in earlier modules. I will deal with collisions in a more rigorous manner in this module, and will also extendthe analysis to two dimensions.

Facts worth remembering -- Types of collisions

An elastic collision is one in which the total kinetic energy is the same before and after the collision.

An inelastic collision is one in which the final kinetic energy is less than the initial kinetic energy.

A perfectly inelastic collision is one that results in the two objects sticking together. The decrease of kinetic energy in a perfectly inelastic collision is aslarge as possible (consistent with the conservation of momentum).

Momentum is conserved regardless of whether the collision is elastic or inelastic.

A general solution for elastic collisions

I will provide you with three equations that apply in general to elastic collisions in two dimensions. However, as you will see, there are more thanthree variables involved in such collisions. With only three equations, you can only solve for three unknowns. Therefore, in order to solve the general problem,the values of all the other variables must be known.

The two-dimensional solution can be applied to one-dimensional problems by constraining the directions of motion of the two objects to either be the sameor to differ by 180 degrees. If possible, such problems should be structured to cause the directions to be along the x-axis. This will often simplify thesolution.

A general solution for inelastic collisions

The case for inelastic collisions is more restrictive than the case for elastic collisions. Only two of theequations mentioned above apply to inelastic collisions. As a result, you can only solve for two unknown values for an inelastic collision. The values for allof the other variables must be known.

Collision equations

The equations for collisions of two objects in two-dimensional space are shown in Figure 1 . Note that it is assumed that the two objects constitute an isolated system -- that is, a closed system that is not subject to externalinteractions. This requires that both the magnitude and the direction of the momentum for the system be the same at the beginning and the end of the collision.

Figure 1 . Equations for collisions of two objects in two-dimensional space.
Using conservation of momentum alone, we have two equations, allowing us to solve for two unknowns.m1*u1x + m2*u2x = m1*v1x + m2*v2x m1*u1y + m2*u2y = m1*v1y + m2*v2yUsing conservation of kinetic energy for the elasticcase gives us one additional equation, allowing us to solve for three unknowns.0.5*m1*u1^2 + 0.5*m2*u2^2 = 0.5*m1*v1^2 + 0.5*m2*v2^2 Velocities can be decomposed into their x andy-components using the following equations: u1x = u1*cos(a1)u1y = u1*sin(a1) u2x = u2*cos(a2)u2y = u2*sin(a2) v1x = v1*cos(b1)v1y = v1*sin(b1) v2x = v2*cos(b2)v2y = v2*sin(b2) Substitution yields the following for the two momentumequations: m1*u1*cos(a1) + m2*u2*cos(a2) = m1*v1*cos(b1) + m2*v2*cos(b2)m1*u1*sin(a1) + m2*u2*sin(a2) = m1*v1*sin(b1) + m2*v2*sin(b2) where:m1 and m2 are the masses of the two objects in kg u1 and u2 are the magnitudes of the initialvelocities of the two objects. Velocities are measured in meters/secondv1 and v2 are the magnitudes of the final velocities of the two objectsu1x, u1y, v1x, and v1y are the x and y-components of the initial and final velocities in 2D space.a1 and a2 are angles that describe the initial directions of the two objects through 2D space.Angles are measured counter-clockwise relative to the positive x-axisb1 and b2 are angles that describe the final directions of the two objects through 2D spaceIt is assumed that the two objects constitute an isolated system.Variables: m1, m2, u1, u2, v1, v2, a1, a2, b1, b2

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Accessible physics concepts for blind students. OpenStax CNX. Oct 02, 2015 Download for free at https://legacy.cnx.org/content/col11294/1.36
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Accessible physics concepts for blind students' conversation and receive update notifications?

Ask