<< Chapter < Page Chapter >> Page >

Directional movement depends on the configuration of the flagella. Bacteria can move in response to a variety of environmental signals, including light ( phototaxis ), magnetic fields ( magnetotaxis ) using magnetosomes, and, most commonly, chemical gradients ( chemotaxis ). Purposeful movement toward a chemical attractant, like a food source, or away from a repellent, like a poisonous chemical, is achieved by increasing the length of runs and decreasing the length of tumbles . When running, flagella rotate in a counterclockwise direction, allowing the bacterial cell to move forward. In a peritrichous bacterium, the flagella are all bundled together in a very streamlined way ( [link] ), allowing for efficient movement. When tumbling, flagella are splayed out while rotating in a clockwise direction, creating a looping motion and preventing meaningful forward movement but reorienting the cell toward the direction of the attractant. When an attractant exists, runs and tumbles still occur; however, the length of runs is longer, while the length of the tumbles is reduced, allowing overall movement toward the higher concentration of the attractant. When no chemical gradient exists, the lengths of runs and tumbles are more equal, and overall movement is more random ( [link] ).

A diagram showing the run and tumble of bacterial motion. The tumble is when a clockwise rotation of flagella cause the bacterial cell to tumble about. The run is when a counter-clockwise rotation of the flagella cause the bacterial cell to move in a linear direction.
Bacteria achieve directional movement by changing the rotation of their flagella. In a cell with peritrichous flagella, the flagella bundle when they rotate in a counterclockwise direction, resulting in a run. However, when the flagella rotate in a clockwise direction, the flagella are no longer bundled, resulting in tumbles.
A diagram showing the run and tumble motion of bacteria. In the run, the bundeled flagella move in a counter clockwise rotation and the cell moves in a straight line. In the tumble, the flagella separate due to a clockwise rotation and the bacterial cell floats with no particular direction. This is followed by another run. If there is an attractant (a chemical gradient) the bacterial cell moves towards the attractant and the length of the run is extended.
Without a chemical gradient, flagellar rotation cycles between counterclockwise (run) and clockwise (tumble) with no overall directional movement. However, when a chemical gradient of an attractant exists, the length of runs is extended, while the length of tumbles is decreased. This leads to chemotaxis: an overall directional movement toward the higher concentration of the attractant.
  • What is the peptidoglycan layer and how does it differ between gram-positive and gram-negative bacteria?
  • Compare and contrast monotrichous, amphitrichous, lophotrichous, and peritrichous flagella.

Key concepts and summary

  • Prokaryotic cells differ from eukaryotic cells in that their genetic material is contained in a nucleoid rather than a membrane-bound nucleus. In addition, prokaryotic cells generally lack membrane-bound organelles.
  • Prokaryotic cells of the same species typically share a similar cell morphology and cellular arrangement .
  • Most prokaryotic cells have a cell wall that helps the organism maintain cellular morphology and protects it against changes in osmotic pressure.
  • Outside of the nucleoid, prokaryotic cells may contain extrachromosomal DNA in plasmids .
  • Prokaryotic ribosomes that are found in the cytoplasm have a size of 70S.
  • Some prokaryotic cells have inclusions that store nutrients or chemicals for other uses.
  • Some prokaryotic cells are able to form endospores through sporulation to survive in a dormant state when conditions are unfavorable. Endospores can germinate , transforming back into vegetative cells when conditions improve.
  • In prokaryotic cells, the cell envelope includes a plasma membrane and usually a cell wall.
  • Bacterial membranes are composed of phospholipids with integral or peripheral proteins. The fatty acid components of these phospholipids are ester-linked and are often used to identify specific types of bacteria. The proteins serve a variety of functions, including transport, cell-to-cell communication, and sensing environmental conditions. Archaeal membranes are distinct in that they are composed of fatty acids that are ether-linked to phospholipids.
  • Some molecules can move across the bacterial membrane by simple diffusion, but most large molecules must be actively transported through membrane structures using cellular energy.
  • Prokaryotic cell walls may be composed of peptidoglycan (bacteria) or pseudopeptidoglycan (archaea).
  • Gram-positive bacterial cells are characterized by a thick peptidoglycan layer, whereas gram-negative bacterial cells are characterized by a thin peptidoglycan layer surrounded by an outer membrane.
  • Some prokaryotic cells produce glycocalyx coatings, such as capsules and slime layers , that aid in attachment to surfaces and/or evasion of the host immune system.
  • Some prokaryotic cells have fimbriae or pili , filamentous appendages that aid in attachment to surfaces. Pili are also used in the transfer of genetic material between cells.
  • Some prokaryotic cells use one or more flagella to move through water. Peritrichous bacteria, which have numerous flagella, use runs and tumbles to move purposefully in the direction of a chemical attractant.

True/false

Bacteria have 80S ribosomes each composed of a 60S large subunit and a 40S small subunit.

False

Got questions? Get instant answers now!

Fill in the blank

Prokaryotic cells that are rod-shaped are called _____________.

bacilli

Got questions? Get instant answers now!

The type of inclusion containing polymerized inorganic phosphate is called _____________.

volutin (or metachromatic granule)

Got questions? Get instant answers now!

Short answer

What is the direction of water flow for a bacterial cell living in a hypotonic environment? How do cell walls help bacteria living in such environments?

Got questions? Get instant answers now!

How do bacterial flagella respond to a chemical gradient of an attractant to move toward a higher concentration of the chemical?

Got questions? Get instant answers now!

Label the parts of the prokaryotic cell.

A diagram of a bacterial cell. The thick outer structure of the cell is not lableled. The next layer in (a thinner structure) is labeled E. A much thinner structure inside of that is labeled F. Inside of F is the main body of the cell. Small dots are labeled B. A long line forming a loop is labeled C. On the outside of the cell, short projectsions are labeled A and a long projection is labeled D.
Got questions? Get instant answers now!

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask