<< Chapter < Page Chapter >> Page >

Membrane filters

Filtration can also be used to remove microbes from liquid samples using membrane filtration . Membrane filters for liquids function similarly to HEPA filters for air. Typically, membrane filters that are used to remove bacteria have an effective pore size of 0.2 µm, smaller than the average size of a bacterium (1 µm), but filters with smaller pore sizes are available for more specific needs. Membrane filtration is useful for removing bacteria from various types of heat-sensitive solutions used in the laboratory, such as antibiotic solutions and vitamin solutions. Large volumes of culture media may also be filter sterilized rather than autoclaved to protect heat-sensitive components. Often when filtering small volumes, syringe filter s are used, but vacuum filter s are typically used for filtering larger volumes ( [link] ).

a) Photo of 2 chambers separated by a filter; a tube runs from below the filter to a device. B) A photo of a syringe with a filter on the end.
Membrane filters come in a variety of sizes, depending on the volume of solution being filtered. (a) Larger volumes are filtered in units like these. The solution is drawn through the filter by connecting the unit to a vacuum. (b) Smaller volumes are often filtered using syringe filters, which are units that fit on the end of a syringe. In this case, the solution is pushed through by depressing the syringe’s plunger. (credit a, b: modification of work by Brian Forster)
  • Would membrane filtration with a 0.2-µm filter likely remove viruses from a solution? Explain.
  • Name at least two common uses of HEPA filtration in clinical or laboratory settings.

[link] and [link] summarize the physical methods of control discussed in this section.

A table titled physical methods of control; 4 columns – method, conditions, mode of action, and examples of use. Groupings are: heat, cold, pressure, desiccation, radiation, sonication, and filtration. Heat. Boiling, 100 °C at sea level, Denatures proteins and alters membranes; usese Cooking, personal use, preparing certain laboratory media. Dry-heat oven, 170 °C for 2 hours, Denatures proteins and alters membranes, dehydration, desiccation; uses Sterilization of heat-stable medical and laboratory equipment and glassware. Incineration, Exposure to flame,Destroy by burning, Flaming loop, microincinerator. Autoclave, Typical settings: 121 °C for 15–40 minutes at 15 psi, Denatures proteins and alters membranes, Sterilization of microbiological media, heat-stable medical and laboratory equipment, and other heat-stable items. Pasteurization, 72 °C for 15 seconds (HTST) or 138 °C for ≥ 2 seconds (UHT), Denatures proteins and alters membranes, Prevents spoilage of milk, apple juice, honey, and other ingestible liquids. Cold. Refrigeration, 0 °C to 7 °C, Inhibits metabolism (slows or arrests cell division), Preservation of food or laboratory materials (solutions, cultures). Freezing, Below −2 °C, Stops metabolism, may kill microbes, Long-term storage of food, laboratory cultures, or medical specimens. Pressure. High-pressure processing, Exposure to pressures of 100–800 MPa, Denatures proteins and can cause cell lysis Preservation of food, Hyberbaric oxygen therapy. Inhalation of pure oxygen at a pressure of 1–3 atm, Inhibits metabolism and growth of anaerobic microbes, Treatment of certain infections (e.g., gas gangrene). Dessication. Simple desiccation, Drying, Inhibits metabolism, Dried fruits, jerky. Reduce water activity, Addition of salt or water Inhibits metabolism and can cause lysis, Salted meats and fish, honey, jams and jellies. Lyophilization, Rapid freezing under vacuum, Inhibits metabolism Preservation of food, laboratory cultures, or reagents. Radiation. Ionizing radiation, Exposure to X-rays or gamma rays, Alters molecular structures, introduces double-strand breaks into DNA, Sterilization of spices and heat-sensitive laboratory and medical items; used for food sterilization in Europe but not widely accepted in US. Nonionizing radiation, Exposure to ultraviolet light, Introduces thymine dimers, leading to mutations, Surface sterilization of laboratory materials, water purification. Sonication, Exposure to ultrasonic waves, Cavitation (formation of empty space) disrupts cells, lysing them, Laboratory research to lyse cells; cleaning jewelry, lenses, and equipment. Filtration. HEPA filtration, Use of HEPA filter with 0.3-µm pore size Physically removes microbes from air, Laboratory biological safety cabinets, operating rooms, isolation units, heating and air conditioning systems, vacuum cleaners. Membrane filtration Use of membrane filter with 0.2-µm or smaller pore size, Physically removes microbes from liquid solutions, Removal of bacteria from heat-sensitive solutions like vitamins, antibiotics, and media with heat-sensitive components.
See alt text for previous figure. This figure is a continuation of a 2 part figure, the contents of which are described in full in the alt text for the previous figure.

Key concepts and summary

  • Heat is a widely used and highly effective method for controlling microbial growth.
  • Dry-heat sterilization protocols are used commonly in aseptic techniques in the laboratory. However, moist-heat sterilization is typically the more effective protocol because it penetrates cells better than dry heat does.
  • Pasteurization is used to kill pathogens and reduce the number of microbes that cause food spoilage. High-temperature, short-time pasteurization is commonly used to pasteurize milk that will be refrigerated; ultra-high temperature pasteurization can be used to pasteurize milk for long-term storage without refrigeration.
  • Refrigeration slows microbial growth; freezing stops growth, killing some organisms. Laboratory and medical specimens may be frozen on dry ice or at ultra-low temperatures for storage and transport.
  • High-pressure processing can be used to kill microbes in food. Hyperbaric oxygen therapy to increase oxygen saturation has also been used to treat certain infections.
  • Desiccation has long been used to preserve foods and is accelerated through the addition of salt or sugar, which decrease water activity in foods.
  • Lyophilization combines cold exposure and desiccation for the long-term storage of foods and laboratory materials, but microbes remain and can be rehydrated.
  • Ionizing radiation , including gamma irradiation, is an effective way to sterilize heat-sensitive and packaged materials. Nonionizing radiation , like ultraviolet light, is unable to penetrate surfaces but is useful for surface sterilization.
  • HEPA filtration is commonly used in hospital ventilation systems and biological safety cabinets in laboratories to prevent transmission of airborne microbes. Membrane filtration is commonly used to remove bacteria from heat-sensitive solutions.

Fill in the blank

In an autoclave, the application of pressure to ________ is increased to allow the steam to achieve temperatures above the boiling point of water.

steam

Got questions? Get instant answers now!

True/false

Ionizing radiation can penetrate surfaces, but nonionizing radiation cannot.

True

Got questions? Get instant answers now!

Moist-heat sterilization protocols require the use of higher temperatures for longer periods of time than do dry-heat sterilization protocols do.

False

Got questions? Get instant answers now!

Short answer

What is the advantage of HTST pasteurization compared with sterilization? What is an advantage of UHT treatment?

Got questions? Get instant answers now!

How does the addition of salt or sugar help preserve food?

Got questions? Get instant answers now!

Which is more effective at killing microbes: autoclaving or freezing? Explain.

Got questions? Get instant answers now!

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask