<< Chapter < Page Chapter >> Page >

The Carbon Cycle
The Carbon Cycle . Figure illustrates the carbon cycle on, above, and below the Earth's surface. Source: U.S. Department of Energy Genomic Science Program .

Human interactions with the carbon cycle

The global carbon cycle contributes substantially to the provisioning ecosystem services upon which humans depend. We harvest approximately 25% of the total plant biomass that is produced each year on the land surface to supply food, fuel wood and fiber from croplands, pastures and forests. In addition, the global carbon cycle plays a key role in regulating ecosystem services because it significantly influences climate via its effects on atmospheric CO 2 concentrations. Atmospheric CO 2 concentration increased from 280 parts per million (ppm) to 390 ppm between the start of industrial revolution in the late eighteenth century and 2010. This reflected a new flux in the global carbon cycle — anthropogenic CO2 emissions where humans release CO 2 into the atmosphere by burning fossil fuels and changing land use. Fossil fuel burning takes carbon from coal, gas, and oil reserves, where it would be otherwise stored on very long time scales, and introduces it into the active carbon cycle. Land use change releases carbon from soil and plant biomass pools into the atmosphere, particularly through the process of deforestation for wood extraction or conversion of land to agriculture. In 2009, the additional flux of carbon into the atmosphere from anthropogenic sources was estimated to be 9 GtC—a significant disturbance to the natural carbon cycle that had been in balance for several thousand years previously. Slightly more than half of this anthropogenic CO 2 is currently being absorbed by greater photosynthesis by plants on land and at sea (5 GtC). However, that means 4 GtC is being added to the atmospheric pool each year and, while total emissions are increasing, the proportion absorbed by photosynthesis and stored on land and in the oceans is declining ( Le Quere et al., 2009 ). Rising atmospheric CO 2 concentrations in the twentieth century caused increases in temperature and started to alter other aspects of the global environment. Global environmental change has already caused a measurable decrease in the global harvest of certain crops. The scale and range of impacts from global environmental change of natural and agricultural ecosystems is projected to increase over the twenty-first century, and will pose a major challenge to human well-being.

The natural water cycle

The vast majority of water on Earth is saline (salty) and stored in the oceans. Meanwhile, most of the world's fresh water is in the form of ice, snow, and groundwater. This means a significant fraction of the water pool is largely isolated from the water cycle. The major long-term stores of fresh water include ice sheets in Antarctica and Greenland, as well as groundwater pools that were filled during wetter periods of past geological history. In contrast, the water stored in rivers, lakes, and ocean surface is relatively rapidly cycled as it evaporates into the atmosphere and then falls back to the surface as precipitation. The atmospheric pool of water turns over most rapidly because it is small compared to the other pools (e.g.<15% of the freshwater lake pool). Evaporation is the process whereby water is converted from a liquid into a vapor as a result of absorbing energy (usually from solar radiation). Evaporation from vegetated land is referred to as evapotranspiration    because it includes water transpired by plants, i.e. water taken up from the soil by roots, transported to leaves and evaporated from leaf surfaces into the atmosphere via stomatal pores. Precipitation is the conversion of atmospheric water from vapor into liquid (rain) or solid forms (snow, hail) that then fall to Earth's surface. Some water from precipitation moves over the land surface by surface runoff    and streamflow    , while other water from precipitation infiltrates the soil and moves below the surface as groundwater discharge    . Water vapor in the atmosphere is commonly moved away from the source of evaporation by wind and the movement of air masses. Consequently, most water falling as precipitation comes from a source of evaporation that is located upwind. Nonetheless, local sources of evaporation can contribute as much as 25-33% of water in precipitation.

Questions & Answers

Ayele, K., 2003. Introductory Economics, 3rd ed., Addis Ababa.
Widad Reply
can you send the book attached ?
Ariel
?
Ariel
What is economics
Widad Reply
the study of how humans make choices under conditions of scarcity
AI-Robot
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn Reply
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn
what is ecnomics
Jan Reply
this is the study of how the society manages it's scarce resources
Belonwu
what is macroeconomic
John Reply
macroeconomic is the branch of economics which studies actions, scale, activities and behaviour of the aggregate economy as a whole.
husaini
etc
husaini
difference between firm and industry
husaini Reply
what's the difference between a firm and an industry
Abdul
firm is the unit which transform inputs to output where as industry contain combination of firms with similar production 😅😅
Abdulraufu
Suppose the demand function that a firm faces shifted from Qd  120 3P to Qd  90  3P and the supply function has shifted from QS  20  2P to QS 10  2P . a) Find the effect of this change on price and quantity. b) Which of the changes in demand and supply is higher?
Toofiq Reply
explain standard reason why economic is a science
innocent Reply
factors influencing supply
Petrus Reply
what is economic.
Milan Reply
scares means__________________ends resources. unlimited
Jan
economics is a science that studies human behaviour as a relationship b/w ends and scares means which have alternative uses
Jan
calculate the profit maximizing for demand and supply
Zarshad Reply
Why qualify 28 supplies
Milan
what are explicit costs
Nomsa Reply
out-of-pocket costs for a firm, for example, payments for wages and salaries, rent, or materials
AI-Robot
concepts of supply in microeconomics
David Reply
economic overview notes
Amahle Reply
identify a demand and a supply curve
Salome Reply
i don't know
Parul
there's a difference
Aryan
Demand curve shows that how supply and others conditions affect on demand of a particular thing and what percent demand increase whith increase of supply of goods
Israr
Hi Sir please how do u calculate Cross elastic demand and income elastic demand?
Abari
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Sustainability: a comprehensive foundation. OpenStax CNX. Nov 11, 2013 Download for free at http://legacy.cnx.org/content/col11325/1.43
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?

Ask