<< Chapter < Page
  Class   Page 1 / 1
Chapter >> Page >
physics course for non-physicist complex systems researchers

Physics in the science of complex systems – draft 0

The lectures are organized in lessons within thematic courses.

General introduction

Thermal and statistical physics

The main chapters are copied from the courses of Harvey Gould and Jan Tobochnik , Clark University, Worcester, MA, USA. If not, the source is precised intobrackets.

(External Link)

1.1 from microscopic to macroscopic behavior: statistical physics

Lesson 1

  • Introduction
  • Some qualitative observations
  • Doing work
  • Quality of energy

Lesson 2

  • Some simple simulations
  • Work, heating, and the first law of thermodynamics
  • The fundamental need for statistical approach
  • Time and ensemble averages

Lesson 3

  • Models of matter

The ideal gas

Interparticle potentials

Lattice models

  • Importance of simulations
  • Summary

Additional problems

Suggestions for further reading

1.2 thermodynamic concepts

Lesson 4

  • Introduction
  • The system
  • Thermodynamic equilibrium
  • Temperature
  • Pressure equation of state

Lesson 5

  • Some thermodynamic processes
  • Work
  • The first law of thermodynamics
  • Energy equation of state

Lesson 6

  • Heat capacity and enthalpy
  • Adiabatic processes
  • The second law of thermodynamics
  • The thermodynamic temperature

Lesson 7

  • The second law and heat engine
  • Entropy changes
  • Equivalence of thermodynamic and ideal gas scale temperatures
  • The thermodynamic pressure

Lesson 8

  • The fundamental thermodynamic relation
  • The entropy of an ideal gas
  • The third law of thermodynamics
  • Free energies

Additional problems

Suggestions for further reading

1.3 statistical mechanics

Lesson 9

  • Introduction
  • A simple example of a thermal interaction
  • Counting microstates

Non-interacting spins

One-dimensional Ising model

A particle in a one-dimensional box

One-dimensional harmonic oscillator

A particle in a two-dimensional box

Two non-interacting identical particles and the semi-classical limit

Lesson 10

  • The number of states of N non-interacting particles: semi- classical limit
  • The microcanonical ensemble (fixed E, V, and N)
  • Systems in contact with a heat bath: the canonical ensemble (fixed T, V, and N)
  • Connection between statistical mechanics and thermodynamics

Lesson 11

  • Simple applications of the canonical ensemble
  • Example of a simple thermometer
  • Simulations of the microcanonical ensemble
  • Simulations of the canonical ensemble

Lesson 12

  • Grand canonical ensemble (fixed T, V, and )
  • Entropy and disorder
  • The volume of a hypersphere
  • Fluctuations in the canonical ensemble
  • Molecular dynamics

(Course from North Carolina State University, Raleigh, NC, USA:

(External Link) )

Additional problems

Suggestions for further reading

1.4 thermodynamic relations and processes

Lesson 13

1.4.1 Introduction

1.4.2 Maxwell relations

1.4.3 Applications of the Maxwell relations

Internal energy of an ideal gas

Relation between the specific heats

Lesson 14

1.4.4 Applications to irreversible processes

The Joule or free expansion process

Joule-Thomson process

  • Equilibrium between phases

Equilibrium conditions

Clausius-Clapeyron equation

Simple phase diagrams

Pressure dependence of the melting point

Pressure dependence of the boiling point

The vapor pressure curve

Lesson 15

  • Lattice gas and Ising model

(Introduction to lattice gas from Victor Batista, Chemistry department, Yale University, New Haven, NE, USA:

(External Link) )

(Applet of ising model, from A. Peter young, Physics department, University of California, San Diego, CA, USA:

http://bartok.ucsc.edu/peter/java/ising/keep/ ising.html)

  • Phase transitions

(Generalities from Wikipedia:

http://en.wikipedia.org/wiki/ Phase_transition)

  • A geometric phase transition: percolation

(Lectures notes from the MIT NSE Virtual Reading Room, Massachusetts Institute of Technology, Cambridge, MA, USA:

(External Link) )

Lesson 16

  • Brownian motion

(Introduction from the physics department of the University of Queensland, Brisbane, Australia:

http://www.physics.uq.edu.au/people/mcintyre/ php/laboratories/download_file.php?eid=38)

  • Chaos and self-organization

(Introduction to chaos theory from the center of complex quantum systems, University of Texas, Austin, TX, USA:

(External Link)

Generalities from Wikipedia:

http://en.wikipedia.org/wiki/Self- organization)

Lesson 17

  • Fractals

(Introduction from Michael Frame, Benoit Mandelbrot, and Nial Neger, Yale University, New Haven, NE, USA:

http://classes.yale.edu/Fractals/)

  • Sand Piles

(Introduction from Benoît Masson, Laboratoire Informatique Signaux et systèmes of Sofia Antipolis, France, EU:

(External Link) )

  • Spin glasses

(Short introduction&references from Daniel Stariolo, Instituto de Fisica, Universidade Federal do Rio Grande doSul, Porto Alegre, Brazil:

(External Link) )

Additional problems

Suggestions for further reading

Quantum physics made relatively simple

Hans Bethe, Cornell University, Ithaca, NY, USA

Presentation of quantum theory and mechanics through their histories.

(External Link)

3 courses of about 45-50 mn

Video and audio versions

Slides are presented in parallel to the video documents

2.1 “old quantum theory”: 1900 – 1915

2.2 quantum mechanics: 1924 – 1928

2.3 interpretation works on the wave function, the heisenberg uncertainty principle, and the pauli exclusion principle

Suggestions for further reading

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Class. OpenStax CNX. Dec 24, 2010 Download for free at http://cnx.org/content/col11261/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Class' conversation and receive update notifications?

Ask