<< Chapter < Page Chapter >> Page >

Text to binary conversion

The first step is to convert our information into binary. We used the sentence “hello, this is our test message,” repeated four times, as our text message. To get it into binary, we used standard ASCII text mapping.

hello = 01101000 01100101 01101100 01101100 01101111

Series to parallel

The next step is converting this vector of zeros and ones into a matrix. The vector is simply broken up into blocks of length L, and each block is used to form column of the matrix.

Constellation mapping

Now the fun begins. The primary method of modulation in DMT is by inverse Fourier Transform. Although it may seem counterintuitive to do so, by taking the inverse Fourier Transform of a vector or a matrix of vectors, it effectively treats each value as the Fourier coefficient of a sinusoid. Then, one could transmit this sum of sinusoids to a receiver that would in turn take the Fourier Transform (the inverse transform of the inverse transform, of course) and retrieve the original vectors.

But instead of taking the transform of our vectors of zeros and ones, we first convert bit streams of length B to specific complex numbers. We draw these complex numbers from a constellation map (a table of values spread out along the complex plane). See the figure below for an example of a 4 bit mapping.

Constellation mapping table

const map
This table shows which bit stream is mapped to which complex value.

Signal mirroring and inverse fourier transform

Why would we do that, you might ask. Doesn’t converting binary numbers to complex ones just make things more complicated? Well, DMT utilizes the inverse Fourier Transform in order to attain its modulation. So taking the IFFT of a vector of complex numbers will result in a sum of sinusoids, which are great signals to be sending over any channel (they are the eigenfunctions of linear, time-invariant systems).

But before taking the inverse transform, the vectors/columns of the matrix must be mirrored and complex conjugated. The Inverse Fourier Transform of a conjugate symmetric signal results in a real signal. And since we can only transmit real signals in the real world, this is what we want.

Cyclic prefix

If we were transmitting over an ideal wire system, we would be done at this point. We could simply send it over the line and start demodulating. But with most channels, especially our acoustic one, this is not the case. The channel’s impulse response has non-zero duration, and will therefore cause inter-symbol interference in our output.

Intersymbol interference occurs during the convolution of the input and impulse response. Since the impulse response has more than a single value length, it will thus cause one block’s information to bleed into the next one.

To prevent this, we added what is called a cyclic prefix to each block. As long as the length of the cyclic prefix is at least as long as the impulse response, it should prevent ISI. However, it has a secondary effect as well. We created the prefix by adding the last N values of each block (where N is the length of the response) to the beginning, preserving the order. Doing this effectively converts the linear convolution of the impulse response with the block sequence to circular convolution with each block separately, since there will now be the “wrap-around” effect. This will be handy later when we start characterizing the channel, since circular convolution in time is equivalent to multiplication of DFT’s in frequency.

00010110011010001 =>01000100010110011010001

The first six bits in the second bit stream, 010001, is the cylcic prefix. Note that although these values are binary, they could essentially range from -1 to 1 since they sample the sinusoid sum that was formed after inverse Fourier Transforming.

Please see the block diagram below. It summarizes the entire transmission process covered above.

Transmission block diagram

Transmission block diagram.
This diagram shows the all of the components and flow of our transmission system.

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Discrete multi-tone communication over acoustic channel. OpenStax CNX. Dec 16, 2009 Download for free at http://cnx.org/content/col11146/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Discrete multi-tone communication over acoustic channel' conversation and receive update notifications?

Ask