<< Chapter < Page Chapter >> Page >

Coordination numbers and oxidation states

Determine the name of the following complexes and give the coordination number of the central metal atom.

(a) Na 2 [PtCl 6 ]

(b) K 3 [Fe(C 2 O 4 ) 3 ]

(c) [Co(NH 3 ) 5 Cl]Cl 2

Solution

(a) There are two Na + ions, so the coordination sphere has a negative two charge: [PtCl 6 ] 2− . There are six anionic chloride ligands, so −2 = −6 + x , and the oxidation state of the platinum is 4+. The name of the complex is sodium hexachloroplatinate(IV), and the coordination number is six. (b) The coordination sphere has a charge of 3− (based on the potassium) and the oxalate ligands each have a charge of 2−, so the metal oxidation state is given by −3 = −6 + x , and this is an iron(III) complex. The name is potassium trisoxalatoferrate(III) (note that tris is used instead of tri because the ligand name starts with a vowel). Because oxalate is a bidentate ligand, this complex has a coordination number of six. (c) In this example, the coordination sphere has a cationic charge of 2+. The NH 3 ligand is neutral, but the chloro ligand has a charge of 1−. The oxidation state is found by +2 = −1 + x and is 3+, so the complex is pentaaminechlorocobalt(III) chloride and the coordination number is six.

Check your learning

The complex potassium dicyanoargenate(I) is used to make antiseptic compounds. Give the formula and coordination number.

Answer:

K[Ag(CN) 2 ]; coordination number two

Got questions? Get instant answers now!

The structures of complexes

The most common structures of the complexes in coordination compounds are octahedral, tetrahedral, and square planar (see [link] ). For transition metal complexes, the coordination number determines the geometry around the central metal ion. [link] compares coordination numbers to the molecular geometry:

This figure contains three diagrams in black and white. The first is labeled, “Pentagonal Bipyramid.” It has 10 isosceles triangle faces, five at the top, joined at a vertex, making a point projecting upward at the top of the figure, and five below, joined at a vertex, making a point projecting downward, at the base of the figure. The second is labeled, “Square Antiprism.” It has flat upper and lower square surfaces and sides made up of 8 equilateral triangles. The sides alternate in orientation between pointing up and pointing down. The third diagram is labeled, “Dodecahedron.” It has twelve isosceles triangle faces.
These are geometries of some complexes with coordination numbers of seven and eight.
Coordination Numbers and Molecular Geometry
Coordination Number Molecular Geometry Example
2 linear [Ag(NH 3 ) 2 ] +
3 trigonal planar [Cu(CN) 3 ] 2−
4 tetrahedral( d 0 or d 10 ), low oxidation states for M [Ni(CO) 4 ]
4 square planar ( d 8 ) [NiCl 4 ] 2−
5 trigonal bipyramidal [CoCl 5 ] 2−
5 square pyramidal [VO(CN) 4 ] 2−
6 octahedral [CoCl 6 ] 3−
7 pentagonal bipyramid [ZrF 7 ] 3−
8 square antiprism [ReF 8 ] 2−
8 dodecahedron [Mo(CN) 8 ] 4−
9 and above more complicated structures [ReH 9 ] 2−

Unlike main group atoms in which both the bonding and nonbonding electrons determine the molecular shape, the nonbonding d -electrons do not change the arrangement of the ligands. Octahedral complexes have a coordination number of six, and the six donor atoms are arranged at the corners of an octahedron around the central metal ion. Examples are shown in [link] . The chloride and nitrate anions in [Co(H 2 O) 6 ]Cl 2 and [Cr(en) 3 ](NO 3 ) 3 , and the potassium cations in K 2 [PtCl 6 ], are outside the brackets and are not bonded to the metal ion.

Three structures are shown. In a, a structure is shown with a central C o atom. From the C o atom, line segments indicate bonds to H subscript 2 O molecules above and below the structure. Above and to both the right and left, dashed wedges indicate bonds to two H subscript 2 O molecules. Similarly, solid wedges below to both the right and left indicate bonds to two more H subscript 2 O molecules. Each bond in this structure is directed toward the O atom in each H subscript 2 O structure. This structure is enclosed in brackets. Outside the brackets to the right is the superscript 2 plus. Following this to the right appears 2 C l superscript negative sign. In b, a central C r atom has six N H subscript 2 groups attached with single bonds. These bonds are indicated with line segments extending above and below, dashed wedges extending up and to the left and right, and solid wedges extending below and to the left and right. The bonds to these groups are all directed toward the N atoms. The N H subscript 2 groups are each connected to C atoms of C H subscript 2 groups extending outward from the central C o atom. These C H subscript 2 groups are connected in pairs with bonds indicated by short line segments. This entire structure is enclosed in brackets. Outside the brackets to the right is the superscript 3 plus. Following to the right is 3 N O subscript 3 superscript negative sign. In c, 2 K superscript plus is followed by a structure in brackets. Inside the brackets is a central P t atom. From the P t atom, line segments indicate bonds to C l atoms above and below the structure. Above and to both the right and left, dashed wedges indicate bonds to C l atoms. Similarly, solid wedges below to both the right and left indicate bonds to two more C l atoms. This structure is enclosed in brackets. Outside the brackets to the right is the superscript 2 negative sign.
Many transition metal complexes adopt octahedral geometries, with six donor atoms forming bond angles of 90° about the central atom with adjacent ligands. Note that only ligands within the coordination sphere affect the geometry around the metal center.

For transition metals with a coordination number of four, two different geometries are possible: tetrahedral or square planar. Unlike main group elements, where these geometries can be predicted from VSEPR theory, a more detailed discussion of transition metal orbitals (discussed in the section on Crystal Field Theory) is required to predict which complexes will be tetrahedral and which will be square planar. In tetrahedral complexes such as [Zn(CN) 4 ] 2− ( [link] ), each of the ligand pairs forms an angle of 109.5°. In square planar complexes, such as [Pt(NH 3 ) 2 Cl 2 ], each ligand has two other ligands at 90° angles (called the cis positions) and one additional ligand at an 180° angle, in the trans position.

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask