<< Chapter < Page Chapter >> Page >

The integrated rate law for our second-order reactions has the form of the equation of a straight line:

1 [ A ] = k t + 1 [ A ] 0 y = m x + b

A plot of 1 [ A ] versus t for a second-order reaction is a straight line with a slope of k and an intercept of 1 [ A ] 0 . If the plot is not a straight line, then the reaction is not second order.

Determination of reaction order by graphing

Test the data given to show whether the dimerization of C 4 H 6 is a first- or a second-order reaction.

Solution

Trial Time (s) [C 4 H 6 ] ( M )
1 0 1.00 × 10 −2
2 1600 5.04 × 10 −3
3 3200 3.37 × 10 −3
4 4800 2.53 × 10 −3
5 6200 2.08 × 10 −3

In order to distinguish a first-order reaction from a second-order reaction, we plot ln[C 4 H 6 ] versus t and compare it with a plot of 1 [ C 4 H 6 ] versus t . The values needed for these plots follow.

Time (s) 1 [ C 4 H 6 ] ( M −1 ) ln[C 4 H 6 ]
0 100 −4.605
1600 198 −5.289
3200 296 −5.692
4800 395 −5.978
6200 481 −6.175

The plots are shown in [link] . As you can see, the plot of ln[C 4 H 6 ] versus t is not linear, therefore the reaction is not first order. The plot of 1 [ C 4 H 6 ] versus t is linear, indicating that the reaction is second order.

Two graphs are shown, each with the label “Time ( s )” on the x-axis. The graph on the left is labeled, “l n [ C subscript 4 H subscript 6 ],” on the y-axis. The graph on the right is labeled “1 divided by [ C subscript 4 H subscript 6 ],” on the y-axis. The x-axes for both graphs show markings at 3000 and 6000. The y-axis for the graph on the left shows markings at negative 6, negative 5, and negative 4. A decreasing slightly concave up curve is drawn through five points at coordinates that are (0, negative 4.605), (1600, negative 5.289), (3200, negative 5.692), (4800, negative 5.978), and (6200, negative 6.175). The y-axis for the graph on the right shows markings at 100, 300, and 500. An approximately linear increasing curve is drawn through five points at coordinates that are (0, 100), (1600, 198), (3200, 296), and (4800, 395), and (6200, 481).
These two graphs show first- and second-order plots for the dimerization of C 4 H 6 . Since the first-order plot (left) is not linear, we know that the reaction is not first order. The linear trend in the second-order plot (right) indicates that the reaction follows second-order kinetics.

Check your learning

Does the following data fit a second-order rate law?

Trial Time (s) [ A ] ( M )
1 5 0.952
2 10 0.625
3 15 0.465
4 20 0.370
5 25 0.308
6 35 0.230

Answer:

Yes. The plot of 1 [ A ] vs. t is linear:

A graph, with the title “1 divided by [ A ] vs. Time” is shown, with the label, “Time ( s ),” on the x-axis. The label “1 divided by [ A ]” appears left of the y-axis. The x-axis shows markings beginning at zero and continuing at intervals of 10 up to and including 40. The y-axis on the left shows markings beginning at 0 and increasing by intervals of 1 up to and including 5. A line with an increasing trend is drawn through six points at approximately (4, 1), (10, 1.5), (15, 2.2), (20, 2.8), (26, 3.4), and (36, 4.4).
Got questions? Get instant answers now!

Zero-order reactions

For zero-order reactions, the differential rate law is:

Rate = k [ A ] 0 = k

A zero-order reaction thus exhibits a constant reaction rate, regardless of the concentration of its reactants.

The integrated rate law for a zero-order reaction also has the form of the equation of a straight line:

[ A ] = k t + [ A ] 0 y = m x + b

A plot of [ A ] versus t for a zero-order reaction is a straight line with a slope of −k and an intercept of [ A ] 0 . [link] shows a plot of [NH 3 ] versus t for the decomposition of ammonia on a hot tungsten wire and for the decomposition of ammonia on hot quartz (SiO 2 ). The decomposition of NH 3 on hot tungsten is zero order; the plot is a straight line. The decomposition of NH 3 on hot quartz is not zero order (it is first order). From the slope of the line for the zero-order decomposition, we can determine the rate constant:

slope = k = 1.3110 −6 mol/L/s
A graph is shown with the label, “Time ( s ),” on the x-axis and, “[ N H subscript 3 ] M,” on the y-axis. The x-axis shows a single value of 1000 marked near the right end of the axis. The vertical axis shows markings at 1.0 times 10 superscript negative 3, 2.0 times 10 superscript negative 3, and 3.0 times 10 superscript negative 3. A decreasing linear trend line is drawn through six points at the approximate coordinates: (0, 2.8 times 10 superscript negative 3), (200, 2.6 times 10 superscript negative 3), (400, 2.3 times 10 superscript negative 3), (600, 2.0 times 10 superscript negative 3), (800, 1.8 times 10 superscript negative 3), and (1000, 1.6 times 10 superscript negative 3). This line is labeled “Decomposition on W.” A decreasing slightly concave up curve is similarly drawn through eight points at the approximate coordinates: (0, 2.8 times 10 superscript negative 3), (100, 2.5 times 10 superscript negative 3), (200, 2.1 times 10 superscript negative 3), (300, 1.9 times 10 superscript negative 3), (400, 1.6 times 10 superscript negative 3), (500, 1.4 times 10 superscript negative 3), and (750, 1.1 times 10 superscript negative 3), ending at about (1000, 0.7 times 10 superscript negative 3). This curve is labeled “Decomposition on S i O subscript 2.”
The decomposition of NH 3 on a tungsten (W) surface is a zero-order reaction, whereas on a quartz (SiO 2 ) surface, the reaction is first order.

The half-life of a reaction

The half-life of a reaction ( t 1/2 ) is the time required for one-half of a given amount of reactant to be consumed. In each succeeding half-life, half of the remaining concentration of the reactant is consumed. Using the decomposition of hydrogen peroxide ( [link] ) as an example, we find that during the first half-life (from 0.00 hours to 6.00 hours), the concentration of H 2 O 2 decreases from 1.000 M to 0.500 M . During the second half-life (from 6.00 hours to 12.00 hours), it decreases from 0.500 M to 0.250 M ; during the third half-life, it decreases from 0.250 M to 0.125 M . The concentration of H 2 O 2 decreases by half during each successive period of 6.00 hours. The decomposition of hydrogen peroxide is a first-order reaction, and, as can be shown, the half-life of a first-order reaction is independent of the concentration of the reactant. However, half-lives of reactions with other orders depend on the concentrations of the reactants.

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask