<< Chapter < Page Chapter >> Page >
The images are shown and labeled “a,” “b” and “c.” Image a, labeled “Sub-critical mass,” shows a blue circle background with a white sphere near the outer, top, left edge of the circle. A downward, right-facing arrow indicates that the white sphere enters the circle. Seven small, yellow starbursts are drawn in the blue circle and each has an arrow facing from it to outside the circle, in seemingly random directions. Image b, labeled “Critical mass,” shows a blue circle background with a white sphere near the outer, top, left edge of the circle. A downward, right-facing arrow indicates that the white sphere enters the circle. Seventeen small, yellow starbursts are drawn in the blue circle and each has an arrow facing from it to outside the circle, in seemingly random directions. Image c, labeled “Critical mass from neutron deflection,” shows a blue circle background, lying in a larger purple circle, with a white sphere near the outer, top, left edge of the purple circle. A downward, right-facing arrow indicates that the white sphere enters both of the circles. Thirteen small, yellow starbursts are drawn in the blue circle and each has an arrow facing from it to outside the blue circle, and a couple outside of the purple circle, in seemingly random directions.
(a) In a subcritical mass, the fissile material is too small and allows too many neutrons to escape the material, so a chain reaction does not occur. (b) In a critical mass, a large enough number of neutrons in the fissile material induce fission to create a chain reaction.

An atomic bomb ( [link] ) contains several pounds of fissionable material, 92 235 U or 94 239 Pu , a source of neutrons, and an explosive device for compressing it quickly into a small volume. When fissionable material is in small pieces, the proportion of neutrons that escape through the relatively large surface area is great, and a chain reaction does not take place. When the small pieces of fissionable material are brought together quickly to form a body with a mass larger than the critical mass, the relative number of escaping neutrons decreases, and a chain reaction and explosion result.

Two diagrams are shown, each to the left of a photo, and labeled “a” and “b.” Diagram a shows the outer casing of a bomb that has a long, tubular shape with a squared-off tail. Components in the shell show a tube with a white disk labeled “Detonator” on the left, an orange disk with a bright yellow starburst drawn around it labeled “Conventional explosive” in the middle and a right-facing arrow leading to a blue disk in the nose of the bomb labeled “uranium 235.” A small blue cone next to the orange disk is shares the label of “uranium 235.” A black and white photo next to this diagram shows a far-off shot of a rising cloud over a landscape. Diagram b shows the outer casing of a bomb that has a short, rounded shape with a squared-off tail. Components in the shell show a large orange circle labeled “Conventional explosive” with a series of black dots around its edge, labeled “Detonators,” and a yellow starburst behind it. White arrows face from the outer edge of the orange circle to a blue circle in the center with a yellow core. The blue circle is labeled “plutonium 239” while the yellow core is labeled “beryllium, dash, polonium initiator.” A black and white photo next to this diagram shows a far-off shot of a giant rising cloud over a landscape.
(a) The nuclear fission bomb that destroyed Hiroshima on August 6, 1945, consisted of two subcritical masses of U-235, where conventional explosives were used to fire one of the subcritical masses into the other, creating the critical mass for the nuclear explosion. (b) The plutonium bomb that destroyed Nagasaki on August 12, 1945, consisted of a hollow sphere of plutonium that was rapidly compressed by conventional explosives. This led to a concentration of plutonium in the center that was greater than the critical mass necessary for the nuclear explosion.

Fission reactors

Chain reactions of fissionable materials can be controlled and sustained without an explosion in a nuclear reactor    ( [link] ). Any nuclear reactor that produces power via the fission of uranium or plutonium by bombardment with neutrons must have at least five components: nuclear fuel consisting of fissionable material, a nuclear moderator, reactor coolant, control rods, and a shield and containment system. We will discuss these components in greater detail later in the section. The reactor works by separating the fissionable nuclear material such that a critical mass cannot be formed, controlling both the flux and absorption of neutrons to allow shutting down the fission reactions. In a nuclear reactor used for the production of electricity, the energy released by fission reactions is trapped as thermal energy and used to boil water and produce steam. The steam is used to turn a turbine, which powers a generator for the production of electricity.

A photo labeled “a” and a diagram labeled “b” is shown. The photo is of a power plant with two large white domes and many buildings. The diagram shows a cylindrical container with thick walls labeled “Walls made of concrete and steel” and three main components inside. The first of these components is a pair of tall cylinders labeled “Steam generators” that sit to either side of a shorter cylinder labeled “Core.” Next to the core is a thin cylinder labeled “Pressurizer.” To the left of the outer walls is a set of pistons labeled “Turbines” that sit above a series of other equipment.
(a) The Diablo Canyon Nuclear Power Plant near San Luis Obispo is the only nuclear power plant currently in operation in California. The domes are the containment structures for the nuclear reactors, and the brown building houses the turbine where electricity is generated. Ocean water is used for cooling. (b) The Diablo Canyon uses a pressurized water reactor, one of a few different fission reactor designs in use around the world, to produce electricity. Energy from the nuclear fission reactions in the core heats water in a closed, pressurized system. Heat from this system produces steam that drives a turbine, which in turn produces electricity. (credit a: modification of work by “Mike” Michael L. Baird; credit b: modification of work by the Nuclear Regulatory Commission)

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask