<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the formation of covalent bonds
  • Define electronegativity and assess the polarity of covalent bonds

In ionic compounds, electrons are transferred between atoms of different elements to form ions. But this is not the only way that compounds can be formed. Atoms can also make chemical bonds by sharing electrons equally between each other. Such bonds are called covalent bonds . Covalent bonds are formed between two atoms when both have similar tendencies to attract electrons to themselves (i.e., when both atoms have identical or fairly similar ionization energies and electron affinities). For example, two hydrogen atoms bond covalently to form an H 2 molecule; each hydrogen atom in the H 2 molecule has two electrons stabilizing it, giving each atom the same number of valence electrons as the noble gas He.

Compounds that contain covalent bonds exhibit different physical properties than ionic compounds. Because the attraction between molecules, which are electrically neutral, is weaker than that between electrically charged ions, covalent compounds generally have much lower melting and boiling points than ionic compounds. In fact, many covalent compounds are liquids or gases at room temperature, and, in their solid states, they are typically much softer than ionic solids. Furthermore, whereas ionic compounds are good conductors of electricity when dissolved in water, most covalent compounds are insoluble in water; since they are electrically neutral, they are poor conductors of electricity in any state.

Formation of covalent bonds

Nonmetal atoms frequently form covalent bonds with other nonmetal atoms. For example, the hydrogen molecule, H 2 , contains a covalent bond between its two hydrogen atoms. [link] illustrates why this bond is formed. Starting on the far right, we have two separate hydrogen atoms with a particular potential energy, indicated by the red line. Along the x -axis is the distance between the two atoms. As the two atoms approach each other (moving left along the x -axis), their valence orbitals (1 s ) begin to overlap. The single electrons on each hydrogen atom then interact with both atomic nuclei, occupying the space around both atoms. The strong attraction of each shared electron to both nuclei stabilizes the system, and the potential energy decreases as the bond distance decreases. If the atoms continue to approach each other, the positive charges in the two nuclei begin to repel each other, and the potential energy increases. The bond length    is determined by the distance at which the lowest potential energy is achieved.

A graph is shown with the x-axis labeled, “Internuclear distance ( p m )” while the y-axis is labeled, “Energy ( J ).” One value, “0,” is labeled midway up the y-axis and two values: “0” at the far left and “0.74” to the left, are labeled on the x-axis. The point “0.74” is labeled, “H bond H distance.” A line is graphed that begins near the top of the y-axis and to the far left on the x-axis and drops steeply to a point labeled, “negative 7.24 times 10 superscript negative 19 J” on the y-axis and 0.74 on the x-axis. This low point on the graph corresponds to a drawing of two spheres that overlap considerably. The line then rises to zero on the y-axis and levels out. The point where it almost reaches zero corresponds to two spheres that overlap slightly. The line at zero on the y-axis corresponds to two spheres that are far from one another.
The potential energy of two separate hydrogen atoms (right) decreases as they approach each other, and the single electrons on each atom are shared to form a covalent bond. The bond length is the internuclear distance at which the lowest potential energy is achieved.

It is essential to remember that energy must be added to break chemical bonds (an endothermic process), whereas forming chemical bonds releases energy (an exothermic process). In the case of H 2 , the covalent bond is very strong; a large amount of energy, 436 kJ, must be added to break the bonds in one mole of hydrogen molecules and cause the atoms to separate:

Questions & Answers

what are ionic compound
elepo Reply
where can I find the Arrhenius equation
onwuchekwa Reply
ln(k two/k one)= (- activation energy/R)(1/T two - 1/T one) T is tempuratue in Kelvin, K is rate constant but you can also use rate two and one instead, R is 8.314 J/mol×Kelvin
Drenea
if ur solving for k two or k one you will need to use e to cancel out ln
Drenea
what is an atom
Precious Reply
An atom is the smallest particle of an element which can take part in a chemical reaction..
olotu
hello
Karan
how to find the rate of reaction?
Karan
what is isomerism ?
Lucky Reply
Formula for equilibrium
Danmori Reply
is it equilibrium constant
olotu
Yes
Olatunde
yes
David
what us atomic of molecule
Imhologhomhe Reply
chemical formula for water
Muhammad Reply
H20
Samson
what is elemental
Maryam Reply
what are the properties of pressure
Maryam
How can water be turned to gas
VICTOR
what's a periodic table
Okiemute Reply
this can be defined as the systematic way of arranging element into vertical spaces called periods and horizontal spaces called groups on a table
onwuchekwa
how does carbon catenate?
obuke Reply
condition in cracking from Diesel to petrol
Brient Reply
hey I don't understand anything in chemistry so I was wondering if you could help me
Ruth Reply
i also
Okikiola
I also
Brient
hello
Brient
condition for cracking diesel to form kerosene
Brient
Really?
Isa
yes
Brient
can you tell me
Brient
please let me know
Brient
what is periodic law
rotimi Reply
periodic law state that the physical and chemical properties of an element is the periodic function of their atomic number
rotimi
how is valency calculated
Ashley Reply
How is velency calculated
Bankz
Hi am Isaac, The number of electrons within the outer shell of the element determine its valency . To calculate the valency of an element(or molecule, for that matter), there are multiple methods. ... The valency of an atom is equal to the number of electrons in the outer shell if that number is fou
YAKUBU
what is the oxidation number of this compound fecl2,fecl3,fe2o3
Asmau Reply
Practice Key Terms 5

Get the best Chemistry course in your pocket!





Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask