<< Chapter < Page Chapter >> Page >

Phosphorus

The name phosphorus comes from the Greek words meaning light bringing. When phosphorus was first isolated, scientists noted that it glowed in the dark and burned when exposed to air. Phosphorus is the only member of its group that does not occur in the uncombined state in nature; it exists in many allotropic forms. We will consider two of those forms: white phosphorus and red phosphorus.

White phosphorus is a white, waxy solid that melts at 44.2 °C and boils at 280 °C. It is insoluble in water (in which it is stored—see [link] ), is very soluble in carbon disulfide, and bursts into flame in air. As a solid, as a liquid, as a gas, and in solution, white phosphorus exists as P 4 molecules with four phosphorus atoms at the corners of a regular tetrahedron, as illustrated in [link] . Each phosphorus atom covalently bonds to the other three atoms in the molecule by single covalent bonds. White phosphorus is the most reactive allotrope and is very toxic.

Two photos and two diagrams are shown and labeled “a,” “b,” “c,” and “d.” Photo a shows a test tube that contains a solid yellow compound. Diagram b shows a four-sided pyramid shape that has an atom at each corner. Photo c shows a dark black powder in a watch glass. Diagram d shows two four-sided pyramid shapes that have an atom at each corner and are connected together by a single bond.
(a) Because white phosphorus bursts into flame in air, it is stored in water. (b) The structure of white phosphorus consists of P 4 molecules arranged in a tetrahedron. (c) Red phosphorus is much less reactive than is white phosphorus. (d) The structure of red phosphorus consists of networks of P 4 tetrahedra joined by P-P single bonds. (credit a: modification of work from http://images-of-elements.com/phosphorus.php)

Heating white phosphorus to 270–300 °C in the absence of air yields red phosphorus. Red phosphorus (shown in [link] ) is denser, has a higher melting point (~600 °C), is much less reactive, is essentially nontoxic, and is easier and safer to handle than is white phosphorus. Its structure is highly polymeric and appears to contain three-dimensional networks of P 4 tetrahedra joined by P-P single bonds. Red phosphorus is insoluble in solvents that dissolve white phosphorus. When red phosphorus is heated, P 4 molecules sublime from the solid.

Sulfur

The allotropy of sulfur is far greater and more complex than that of any other element. Sulfur is the brimstone referred to in the Bible and other places, and references to sulfur occur throughout recorded history—right up to the relatively recent discovery that it is a component of the atmospheres of Venus and of Io, a moon of Jupiter. The most common and most stable allotrope of sulfur is yellow, rhombic sulfur, so named because of the shape of its crystals. Rhombic sulfur is the form to which all other allotropes revert at room temperature. Crystals of rhombic sulfur melt at 113 °C. Cooling this liquid gives long needles of monoclinic sulfur. This form is stable from 96 °C to the melting point, 119 °C. At room temperature, it gradually reverts to the rhombic form.

Both rhombic sulfur and monoclinic sulfur contain S 8 molecules in which atoms form eight-membered, puckered rings that resemble crowns, as illustrated in [link] . Each sulfur atom is bonded to each of its two neighbors in the ring by covalent S-S single bonds.

Four diagrams are shown and labeled “a,” “b,” “c,” and “d.” Diagram a shows four ring structures that are each made up of eight single bonded atoms. Diagram b shows four chains of eight atoms. Diagram c shows three chains of atoms, one composed by nine atoms, one by twelve atoms and one by eleven atoms. Diagram d shows the same three chains, but this time they are much closer together and slightly intertwined.
These four sulfur allotropes show eight-membered, puckered rings. Each sulfur atom bonds to each of its two neighbors in the ring by covalent S-S single bonds. Here are (a) individual S 8 rings, (b) S 8 chains formed when the rings open, (c) longer chains formed by adding sulfur atoms to S 8 chains, and (d) part of the very long sulfur chains formed at higher temperatures.

Questions & Answers

what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
what is chemistry
Imoh Reply
what is chemistry
Damilola
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask