<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Explain the form and function of a rate law
  • Use rate laws to calculate reaction rates
  • Use rate and concentration data to identify reaction orders and derive rate laws

As described in the previous module, the rate of a reaction is affected by the concentrations of reactants. Rate laws or rate equations are mathematical expressions that describe the relationship between the rate of a chemical reaction and the concentration of its reactants. In general, a rate law (or differential rate law, as it is sometimes called) takes this form:

rate = k [ A ] m [ B ] n [ C ] p

in which [ A ], [ B ], and [ C ] represent the molar concentrations of reactants, and k is the rate constant , which is specific for a particular reaction at a particular temperature. The exponents m , n , and p are usually positive integers (although it is possible for them to be fractions or negative numbers). The rate constant k and the exponents m , n , and p must be determined experimentally by observing how the rate of a reaction changes as the concentrations of the reactants are changed. The rate constant k is independent of the concentration of A , B , or C , but it does vary with temperature and surface area.

The exponents in a rate law describe the effects of the reactant concentrations on the reaction rate and define the reaction order    . Consider a reaction for which the rate law is:

rate = k [ A ] m [ B ] n

If the exponent m is 1, the reaction is first order with respect to A . If m is 2, the reaction is second order with respect to A . If n is 1, the reaction is first order in B . If n is 2, the reaction is second order in B . If m or n is zero, the reaction is zero order in A or B , respectively, and the rate of the reaction is not affected by the concentration of that reactant. The overall reaction order    is the sum of the orders with respect to each reactant. If m = 1 and n = 1, the overall order of the reaction is second order ( m + n = 1 + 1 = 2).

The rate law:

rate = k [ H 2 O 2 ]

describes a reaction that is first order in hydrogen peroxide and first order overall. The rate law:

rate = k [ C 4 H 6 ] 2

describes a reaction that is second order in C 4 H 6 and second order overall. The rate law:

rate = k [ H + ] [ OH ]

describes a reaction that is first order in H + , first order in OH , and second order overall.

Writing rate laws from reaction orders

An experiment shows that the reaction of nitrogen dioxide with carbon monoxide:

NO 2 ( g ) + CO( g ) NO( g ) + CO 2 ( g )

is second order in NO 2 and zero order in CO at 100 °C. What is the rate law for the reaction?

Solution

The reaction will have the form:

rate = k [ NO 2 ] m [ CO ] n

The reaction is second order in NO 2 ; thus m = 2. The reaction is zero order in CO; thus n = 0. The rate law is:

rate = k [ NO 2 ] 2 [ CO ] 0 = k [ NO 2 ] 2

Remember that a number raised to the zero power is equal to 1, thus [CO] 0 = 1, which is why we can simply drop the concentration of CO from the rate equation: the rate of reaction is solely dependent on the concentration of NO 2 . When we consider rate mechanisms later in this chapter, we will explain how a reactant’s concentration can have no effect on a reaction despite being involved in the reaction.

Check your learning

The rate law for the reaction:

H 2 ( g ) + 2 NO( g ) N 2 O( g ) + H 2 O( g )

has been determined to be rate = k [NO] 2 [H 2 ]. What are the orders with respect to each reactant, and what is the overall order of the reaction?

Answer:

order in NO = 2; order in H 2 = 1; overall order = 3

Check your learning

In a transesterification reaction, a triglyceride reacts with an alcohol to form an ester and glycerol. Many students learn about the reaction between methanol (CH 3 OH) and ethyl acetate (CH 3 CH 2 OCOCH 3 ) as a sample reaction before studying the chemical reactions that produce biodiesel:

CH 3 OH + CH 3 CH 2 OCOCH 3 CH 3 OCOCH 3 + CH 3 CH 2 OH

The rate law for the reaction between methanol and ethyl acetate is, under certain conditions, determined to be:

rate = k [ CH 3 OH ]

What is the order of reaction with respect to methanol and ethyl acetate, and what is the overall order of reaction?

Answer:

order in CH 3 OH = 1; order in CH 3 CH 2 OCOCH 3 = 0; overall order = 1

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask