<< Chapter < Page Chapter >> Page >
  • Write the definition of the natural logarithm as an integral.
  • Recognize the derivative of the natural logarithm.
  • Integrate functions involving the natural logarithmic function.
  • Define the number e through an integral.
  • Recognize the derivative and integral of the exponential function.
  • Prove properties of logarithms and exponential functions using integrals.
  • Express general logarithmic and exponential functions in terms of natural logarithms and exponentials.

We already examined exponential functions and logarithms in earlier chapters. However, we glossed over some key details in the previous discussions. For example, we did not study how to treat exponential functions with exponents that are irrational. The definition of the number e is another area where the previous development was somewhat incomplete. We now have the tools to deal with these concepts in a more mathematically rigorous way, and we do so in this section.

For purposes of this section, assume we have not yet defined the natural logarithm, the number e , or any of the integration and differentiation formulas associated with these functions. By the end of the section, we will have studied these concepts in a mathematically rigorous way (and we will see they are consistent with the concepts we learned earlier).

We begin the section by defining the natural logarithm in terms of an integral. This definition forms the foundation for the section. From this definition, we derive differentiation formulas, define the number e , and expand these concepts to logarithms and exponential functions of any base.

The natural logarithm as an integral

Recall the power rule for integrals:

x n d x = x n + 1 n + 1 + C , n 1 .

Clearly, this does not work when n = −1 , as it would force us to divide by zero. So, what do we do with 1 x d x ? Recall from the Fundamental Theorem of Calculus that 1 x 1 t d t is an antiderivative of 1 / x . Therefore, we can make the following definition.

Definition

For x > 0 , define the natural logarithm function by

ln x = 1 x 1 t d t .

For x > 1 , this is just the area under the curve y = 1 / t from 1 to x . For x < 1 , we have 1 x 1 t d t = x 1 1 t d t , so in this case it is the negative of the area under the curve from x to 1 (see the following figure).

This figure has two graphs. The first is the curve y=1/t. It is decreasing and in the first quadrant. Under the curve is a shaded area. The area is bounded to the left at x=1. The area is labeled “area=lnx”. The second graph is the same curve y=1/t. It has shaded area under the curve bounded to the right by x=1. It is labeled “area=-lnx”.
(a) When x > 1 , the natural logarithm is the area under the curve y = 1 / t from 1 to x . (b) When x < 1 , the natural logarithm is the negative of the area under the curve from x to 1 .

Notice that ln 1 = 0 . Furthermore, the function y = 1 / t > 0 for x > 0 . Therefore, by the properties of integrals, it is clear that ln x is increasing for x > 0 .

Properties of the natural logarithm

Because of the way we defined the natural logarithm, the following differentiation formula falls out immediately as a result of to the Fundamental Theorem of Calculus.

Derivative of the natural logarithm

For x > 0 , the derivative of the natural logarithm is given by

d d x ln x = 1 x .

Corollary to the derivative of the natural logarithm

The function ln x is differentiable; therefore, it is continuous.

A graph of ln x is shown in [link] . Notice that it is continuous throughout its domain of ( 0 , ) .

This figure is a graph. It is an increasing curve labeled f(x)=lnx. The curve is increasing with the y-axis as an asymptote. The curve intersects the x-axis at x=1.
The graph of f ( x ) = ln x shows that it is a continuous function.

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask