<< Chapter < Page Chapter >> Page >

White dwarf explosions: the violent kind

If a white dwarf accumulates matter from a companion star at a much faster rate, it can be pushed over the Chandrasekhar limit    . The evolution of such a binary system is shown in [link] . When its mass approaches the Chandrasekhar mass limit (exceeds 1.4 M Sun ), such an object can no longer support itself as a white dwarf, and it begins to contract. As it does so, it heats up, and new nuclear reactions can begin in the degenerate core. The star “simmers” for the next century or so, building up internal temperature. This simmering phase ends in less than a second, when an enormous amount of fusion (especially of carbon) takes place all at once, resulting in an explosion. The fusion energy produced during the final explosion is so great that it completely destroys the white dwarf. Gases are blown out into space at velocities of about 10,000 kilometers per second, and afterward, no trace of the white dwarf remains.

Evolution of a binary system.

Illustration of the Evolution of a Binary System. From left to right the “Primary star” is at bottom drawn as a large white circle. The “Secondary star” is at top as a smaller white circle. A grey arrow points to the right to the next phase. The primary has evolved into a “Red giant”, drawn as a large red circle, and the secondary remains a “Main-sequence star”. A grey arrow points to the right to the next phase. The primary has evolved into a “White dwarf”, drawn as a white dot, and the secondary remains a “Main-sequence star”. A grey arrow points to the right to the next phase. The primary remains a “White dwarf” while the secondary has evolved a “Red giant”, drawn as a large red circle with material flowing toward the white dwarf. A grey arrow points to the right to the final phase. The primary has exploded as a “Type Ia supernova”, drawn as a white blob with debris streaming outward, and the secondary has evolved into a “Red-giant remnant”.
The more massive star evolves first to become a red giant and then a white dwarf. The white dwarf then begins to attract material from its companion, which in turn evolves to become a red giant. Eventually, the white dwarf acquires so much mass that it is pushed over the Chandrasekhar limit and becomes a type Ia supernova.

Such an explosion is also called a supernova, since, like the destruction of a high-mass star, it produces a huge amount of energy in a very short time. However, unlike the explosion of a high-mass star, which can leave behind a neutron star or black hole remnant, the white dwarf is completely destroyed in the process, leaving behind no remnant. We call these white dwarf explosions type Ia supernovae.

We distinguish type I supernovae from those of supernovae of type II originating from the death of massive stars discussed earlier by the absence of hydrogen in their observed spectra. Hydrogen is the most common element in the universe and is a major component of massive, evolved stars. However, as we learned earlier, hydrogen is absent from the white dwarf remnant, which is primarily composed of carbon and oxygen for masses comparable to the Chandrasekhar mass limit.

The “a” subdesignation of type Ia supernovae further refers to the presence of strong silicon absorption lines, which are absent from supernovae originating from the collapse of massive stars. Silicon is one of the products that results from the fusion of carbon and oxygen, which bears out the scenario we described above—that there is a sudden onset of the fusion of the carbon (and oxygen) of which the white dwarf was made.

Observational evidence now strongly indicates that SN 1006 , Tycho’s Supernova , and Kepler’s Supernova (see Supernovae in History ) were all type Ia supernovae. For instance, in contrast to the case of SN 1054 , which yielded the spinning pulsar in the Crab Nebula, none of these historical supernovae shows any evidence of stellar remnants that have survived their explosions. Perhaps even more puzzling is that, so far, astronomers have not been able to identify the companion star feeding the white dwarf in any of these historical supernovae.

Questions & Answers

how does the planets on our solar system orbit
cheten Reply
how many Messier objects are there in space
satish Reply
did you g8ve certificate
Richard Reply
what are astronomy
Issan Reply
Astronomy (from Ancient Greek ἀστρονομία (astronomía) 'science that studies the laws of the stars') is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution.
Rafael
vjuvu
Elgoog
what is big bang theory?
Rosemary
what type of activity astronomer do?
Rosemary
No
Richard
the big bang theory is a theory which states that all matter was compressed together in one place the matter got so unstable it exploded releasing All its contents in the form of hydrogen
Roaul
I want to be an astronomer. That's my dream
Astrit
Who named the the whole galaxy?
Shola Reply
solar Univers
GPOWER
what is space
Richard
what is the dark matter
Richard
what are the factors upon which the atmosphere is stratified
Nicholas Reply
is the big bang the sun
Folakemi Reply
no
Sokak
bigbang is the beginning of the universe
Sokak
but thats just a theory
Sokak
nothing will happen, don't worry brother.
Vansh
what does comet means
GANGAIN Reply
these are Rocky substances between mars and jupiter
GANGAIN
Comets are cosmic snowballs of frozen gases , rock and dust that orbit the sun. They are mostly found between the orbits of Venus and Mercury.
Aarya
hllo
John
hi
John
qt rrt
John
r u there
John
hey can anyone guide me abt international astronomy olympiad
sahil
how can we learn right and true ?
Govinda Reply
why the moon is always appear in an elliptical shape
Gatjuol Reply
Because when astroid hit the Earth then a piece of elliptical shape of the earth was separated which is now called moon.
Hemen
what's see level?
lidiya Reply
Did you mean eye sight or sea level
Minal
oh sorry it's sea level
lidiya
according to the theory of astronomers why the moon is always appear in an elliptical orbit?
Gatjuol
hi !!! I am new in astronomy.... I have so many questions in mind .... all of scientists of the word they just give opinion only. but they never think true or false ... i respect all of them... I believes whole universe depending on true ...থিউরি
Govinda
hello
Jackson
hi
Elyana
we're all stars and galaxies a part of sun. how can science prove thx with respect old ancient times picture or books..or anything with respect to present time .but we r a part of that universe
w astronomy and cosmology!
Michele
another theory of universe except big ban
Albash Reply
how was universe born
Asmit Reply
there many theory to born universe but what is the reality of big bang theory to born universe
Asmit
what is the exact value of π?
Nagalakshmi
by big bang
universal
there are many theories regarding this it's on you believe any theory that you think is true ex. eternal inflation theory, oscillation model theory, multiple universe theory the big bang theory etc.
Aarya
I think after Big Bang!
Michele
from where on earth could u observe all the stars during the during the course of an year
Karuna Reply
I think it couldn't possible on earth
Nagalakshmi
in this time i don't Know
Michele
is that so. the question was in the end of this chapter
Karuna
in theory, you could see them all from the equator (though over the course of a year, not at pne time). stars are measured in "declination", which is how far N or S of the equator (90* to -90*). Polaris is the North star, and is ALMOST 90* (+89*). So it would just barely creep over the horizon.
Christopher
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Astronomy. OpenStax CNX. Apr 12, 2017 Download for free at http://cnx.org/content/col11992/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Astronomy' conversation and receive update notifications?

Ask