This page is optimized for mobile devices, if you would prefer the desktop version just click here

3.3 Carbohydrates

By the end of this section, you will be able to:
  • Discuss the role of carbohydrates in cells and in the extracellular materials of animals and plants
  • Explain the classifications of carbohydrates
  • List common monosaccharides, disaccharides, and polysaccharides

Most people are familiar with carbohydrates, one type of macromolecule, especially when it comes to what we eat. To lose weight, some individuals adhere to “low-carb” diets. Athletes, in contrast, often “carb-load” before important competitions to ensure that they have enough energy to compete at a high level. Carbohydrates are, in fact, an essential part of our diet; grains, fruits, and vegetables are all natural sources of carbohydrates. Carbohydrates provide energy to the body, particularly through glucose, a simple sugar that is a component of starch     and an ingredient in many staple foods. Carbohydrates also have other important functions in humans, animals, and plants.

3.3a molecular structures

Carbohydrates     are classified into three subtypes: monosaccharides, disaccharides, and polysaccharides.

Monosaccharides

Monosaccharides     (mono- = “one”; sacchar- = “sweet”) are simple sugars, the most common of which is glucose. Most monosaccharide names end with the suffix -ose. Monosaccharides can exist as a linear chain or as ring-shaped molecules.

The chemical formula for glucose is C 6 H 12 O 6 . In humans, glucose is an important source of energy. During cellular respiration, energy is released from glucose, and that energy is used to help make adenosine triphosphate (ATP). Plants synthesize glucose using carbon dioxide and water, and glucose in turn is used for energy requirements for the plant. Excess glucose is often stored as starch that is catabolized (the breakdown of larger molecules by cells) by humans and other animals that feed on plants.

Galactose (part of lactose, or milk sugar) and fructose (found in sucrose, in fruit) are other common monosaccharides. Although glucose, galactose, and fructose all have the same chemical formula (C 6 H 12 O 6 ), they differ structurally and chemically (and are known as isomers) because of the different arrangement of functional groups around the asymmetric carbon; all of these monosaccharides have more than one asymmetric carbon ( [link] ).

Art connection

Glucose, galactose, and fructose are all hexoses (have 6 carbon atoms). They are structural isomers, meaning they have the same chemical formula (C 6 H 12 O 6 ) but a different arrangement of atoms.

What kind of sugars are these, aldose or ketose?

Five and six carbon monosaccharides exist in equilibrium between linear and ring forms. When the ring forms, the side chain it closes on is locked into an α or β position. Fructose and ribose also form rings, although they form five-membered rings as opposed to the six-membered ring of glucose.

Disaccharides

Disaccharides     (di- = “two”) form when two monosaccharides undergo a dehydration reaction (also known as a condensation reaction or dehydration synthesis). During this process, the hydroxyl group of one monosaccharide combines with the hydrogen of another monosaccharide, releasing a molecule of water and forming a covalent bond.

<< Chapter < Page Page > Chapter >>
Terms 8

Read also:

OpenStax, General biology part i - mixed majors. OpenStax CNX. May 16, 2016 Download for free at http://legacy.cnx.org/content/col11749/1.5
Google Play and the Google Play logo are trademarks of Google Inc.
Jobilize.com uses cookies to ensure that you get the best experience. By continuing to use Jobilize.com web-site, you agree to the Terms of Use and Privacy Policy.