<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Determine whether an ordered pair is a solution of a system of equations
  • Solve a system of linear equations by graphing
  • Determine the number of solutions of linear system
  • Solve applications of systems of equations by graphing

Before you get started, take this readiness quiz.

  1. For the equation y = 2 3 x 4
    is ( 6 , 0 ) a solution? is ( −3 , −2 ) a solution?
    If you missed this problem, review [link] .
  2. Find the slope and y -intercept of the line 3 x y = 12 .
    If you missed this problem, review [link] .
  3. Find the x - and y -intercepts of the line 2 x 3 y = 12 .
    If you missed this problem, review [link] .

Determine whether an ordered pair is a solution of a system of equations

In Solving Linear Equations and Inequalities we learned how to solve linear equations with one variable. Remember that the solution of an equation is a value of the variable that makes a true statement when substituted into the equation.

Now we will work with systems of linear equations , two or more linear equations grouped together.

System of linear equations

When two or more linear equations are grouped together, they form a system of linear equations.

We will focus our work here on systems of two linear equations in two unknowns. Later, you may solve larger systems of equations.

An example of a system of two linear equations is shown below. We use a brace to show the two equations are grouped together to form a system of equations.

{ 2 x + y = 7 x 2 y = 6

A linear equation in two variables, like 2 x + y = 7, has an infinite number of solutions. Its graph is a line. Remember, every point on the line is a solution to the equation and every solution to the equation is a point on the line.

To solve a system of two linear equations, we want to find the values of the variables that are solutions to both equations. In other words, we are looking for the ordered pairs ( x , y ) that make both equations true. These are called the solutions to a system of equations .

Solutions of a system of equations

Solutions of a system of equations are the values of the variables that make all the equations true. A solution of a system of two linear equations is represented by an ordered pair ( x , y ).

To determine if an ordered pair is a solution to a system of two equations, we substitute the values of the variables into each equation. If the ordered pair makes both equations true, it is a solution to the system.

Let’s consider the system below:

{ 3 x y = 7 x 2 y = 4

Is the ordered pair ( 2 , −1 ) a solution?

This figure begins with a sentence, “We substitute x =2 and y = -1 into both equations.” The first equation shows that 3x minus y equals 7. Then 3 times 2 minus negative, in parentheses, equals 7. Then 7 equals 7 is true. The second equation reads x minus 2y equals 4. Then 2 minus 2 times negative one in parentheses equals 4. Then 4 = 4 is true.

The ordered pair (2, −1) made both equations true. Therefore (2, −1) is a solution to this system.

Let’s try another ordered pair. Is the ordered pair (3, 2) a solution?

This figure begins with the sentence, “We substitute x equals 3 and y equals 2 into both equations.” The first equation reads 3 times x minus 7equals 7. Then, 3 times 3 minus 2 equals 7. Then 7 = 7 is true. The second equation reads x minus 2y equals 4. The n times 2 minus 2 times 2 = 4. Then negative 2 = 4 is false.

The ordered pair (3, 2) made one equation true, but it made the other equation false. Since it is not a solution to both equations, it is not a solution to this system.

Determine whether the ordered pair is a solution to the system: { x y = −1 2 x y = −5

( −2 , −1 ) ( −4 , −3 )

Solution


  1. This figure shows two bracketed equations. The first is x minus y = negative 1. The second is 2 times x minus y equals negative 5. The sentence, “We substitute x = negative 2 and y = 1 into both equations,” follows. The first equation shows the substitution and reveals that negative 1 = negative 1. The second equation shows the substitution and reveals that 5 do not equal -5. Under the first equation is the sentence, “(negative 2, negative 1) does not make both equations true.” Under the second equation is the sentence, “(negative 2, negative 1) is not a solution.”
    (−2, −1) does not make both equations true. (−2, −1) is not a solution.


    This figure begins with the sentence, “We substitute x = -4 and y = -3 into both equations.” The first equation listed shows x – y = -1. Then -4 - (-3) = -1. Then -1 = -1. The second equation listed shows 2x – y = -5. Then 2 times (-4) – (-3) = -5. Then -5 = -5. Under the first equation is the sentence, “(-4, -3) does make both equations true.” Under the second equation is the sentence, “(-4, -3) is a solution.”
    (−4, −3) does not make both equations true. (−4, −3) is a solution.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

What are the factors that affect demand for a commodity
Florence Reply
differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary algebra. OpenStax CNX. Jan 18, 2017 Download for free at http://cnx.org/content/col12116/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask