<< Chapter < Page Chapter >> Page >

Modes of glandular secretion

These three diagrams show the three modes of secretion. All three diagrams show three orange cells in a line with attached to a basement membrane. Each cell has a large nucleus in its lower half. The upper half of each cell contains a Golgi apparatus, which appears like an upside down jellyfish. Yellow secretory vesicles are budding from the top end of the Golgi apparatus. Each vesicle contains several orange circles, which are the secreted substance. In merocrine secretion, the secretory vesicles travel to the top edge of the cells and release the secretion from the cell by melding with the cell membrane. In apocrine secretion, the top third of the cell, which contains the secretory vesicles, pinches in at the sides and then completely disconnects above the Golgi complex. The pinched off portion of the cell is the secretion, as it contains the majority of the secretory vesicles. In holocrine secretion, the upper third of the cell, just above the Golgi complex, forms many finger like projections. Each projection contains several vesicles. The tips of the projections that contain secretory vesicles bud off from the cell. In this method of secretion, the mature cell eventually dies and becomes the secretory product.
(a) In merocrine secretion, the cell remains intact. (b) In apocrine secretion, the apical portion of the cell is released, as well. (c) In holocrine secretion, the cell is destroyed as it releases its product and the cell itself becomes part of the secretion.

Apocrine secretion accumulates near the apical portion of the cell. That portion of the cell and its secretory contents pinch off from the cell and are released. The sweat glands of the armpit are classified as apocrine glands. Both merocrine and apocrine glands continue to produce and secrete their contents with little damage caused to the cell because the nucleus and golgi regions remain intact after secretion.

In contrast, the process of holocrine secretion    involves the rupture and destruction of the entire gland cell. The cell accumulates its secretory products and releases them only when it bursts. New gland cells differentiate from cells in the surrounding tissue to replace those lost by secretion. The sebaceous glands that produce the oils on the skin and hair are holocrine glands/cells ( [link] ).

Sebaceous glands

Image A depicts a cross section of the skin layers. The surface of the skin is at the top of the diagram, with the outer layer occupying about one fifth of the cross section. The outer layer has an irregular border with the inner skin layer, which occupies the remainder of the cross section. A hair follicle is embedded within the inner layer. However, the outer layer actually invaginates into the inner layer around the outside of the follicle, completely sheathing the follicle. The follicle has a bulb at its bottom that is connected to blood vessels. The hair projects from the bulb and travels through the sheath to erupt from the skin surface. The sebaceous gland is an irregular, yellow structure attached at the midpoint of the hair shaft near the border between the inner and outer layers of skin. Its duct actually connects into the side of the hair follicle. Image B shows a micrograph of a sebaceous gland connected to a hair follicle. The bulb of the hair follicle is evident in the micrograph as a bundle of cell surrounding the growing hair at its center. The sebaceous gland is connected to the right of the follicle bulb. The gland appears as an oval shaped mass of pink staining, cube shaped cells with purple nuclei.
These glands secrete oils that lubricate and protect the skin. They are holocrine glands and they are destroyed after releasing their contents. New glandular cells form to replace the cells that are lost. LM × 400. (Micrograph provided by the Regents of University of Michigan Medical School © 2012)

Glands are also named after the products they produce. The serous gland    produces watery, blood-plasma-like secretions rich in enzymes such as alpha amylase, whereas the mucous gland    releases watery to viscous products rich in the glycoprotein mucin. Both serous and mucous glands are common in the salivary glands of the mouth. Mixed exocrine glands contain both serous and mucous glands and release both types of secretions.

Chapter review

In epithelial tissue, cells are closely packed with little or no extracellular matrix except for the basal lamina that separates the epithelium from underlying tissue. The main functions of epithelia are protection from the environment, coverage, secretion and excretion, absorption, and filtration. Cells are bound together by tight junctions that form an impermeable barrier. They can also be connected by gap junctions, which allow free exchange of soluble molecules between cells, and anchoring junctions, which attach cell to cell or cell to matrix. The different types of epithelial tissues are characterized by their cellular shapes and arrangements: squamous, cuboidal, or columnar epithelia. Single cell layers form simple epithelia, whereas stacked cells form stratified epithelia. Very few capillaries penetrate these tissues.

Glands are secretory tissues and organs that are derived from epithelial tissues. Exocrine glands release their products through ducts. Endocrine glands secrete hormones directly into the interstitial fluid and blood stream. Glands are classified both according to the type of secretion and by their structure. Merocrine glands secrete products as they are synthesized. Apocrine glands release secretions by pinching off the apical portion of the cell, whereas holocrine gland cells store their secretions until they rupture and release their contents. In this case, the cell becomes part of the secretion.

Watch this video to find out more about the anatomy of epithelial tissues. Where in the body would one find non-keratinizing stratified squamous epithelium?

The inside of the mouth, esophagus, vaginal canal, and anus.

Got questions? Get instant answers now!

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask