# 12.3 The parabola  (Page 3/11)

 Page 3 / 11

Graph $\text{\hspace{0.17em}}{y}^{2}=-16x.\text{\hspace{0.17em}}$ Identify and label the focus, directrix, and endpoints of the latus rectum.

Focus: $\text{\hspace{0.17em}}\left(-4,0\right);\text{\hspace{0.17em}}$ Directrix: $\text{\hspace{0.17em}}x=4;\text{\hspace{0.17em}}$ Endpoints of the latus rectum: $\text{\hspace{0.17em}}\left(-4,±8\right)$

## Graphing a parabola with vertex (0, 0) and the y -axis as the axis of symmetry

Graph $\text{\hspace{0.17em}}{x}^{2}=-6y.\text{\hspace{0.17em}}$ Identify and label the focus , directrix    , and endpoints of the latus rectum    .

The standard form that applies to the given equation is $\text{\hspace{0.17em}}{x}^{2}=4py.\text{\hspace{0.17em}}$ Thus, the axis of symmetry is the y -axis. It follows that:

• $-6=4p,$ so $\text{\hspace{0.17em}}p=-\frac{3}{2}.\text{\hspace{0.17em}}$ Since $\text{\hspace{0.17em}}p<0,$ the parabola opens down.
• the coordinates of the focus are $\text{\hspace{0.17em}}\left(0,p\right)=\left(0,-\frac{3}{2}\right)$
• the equation of the directrix is $\text{\hspace{0.17em}}y=-p=\frac{3}{2}$
• the endpoints of the latus rectum can be found by substituting into the original equation, $\text{\hspace{0.17em}}\left(±3,-\frac{3}{2}\right)$

Next we plot the focus, directrix, and latus rectum, and draw a smooth curve to form the parabola    .

Graph $\text{\hspace{0.17em}}{x}^{2}=8y.\text{\hspace{0.17em}}$ Identify and label the focus, directrix, and endpoints of the latus rectum.

Focus: $\text{\hspace{0.17em}}\left(0,2\right);\text{\hspace{0.17em}}$ Directrix: $\text{\hspace{0.17em}}y=-2;\text{\hspace{0.17em}}$ Endpoints of the latus rectum: $\text{\hspace{0.17em}}\left(±4,2\right).$

## Writing equations of parabolas in standard form

In the previous examples, we used the standard form equation of a parabola to calculate the locations of its key features. We can also use the calculations in reverse to write an equation for a parabola when given its key features.

Given its focus and directrix, write the equation for a parabola in standard form.

1. Determine whether the axis of symmetry is the x - or y -axis.
1. If the given coordinates of the focus have the form $\text{\hspace{0.17em}}\left(p,0\right),$ then the axis of symmetry is the x -axis. Use the standard form $\text{\hspace{0.17em}}{y}^{2}=4px.$
2. If the given coordinates of the focus have the form $\text{\hspace{0.17em}}\left(0,p\right),$ then the axis of symmetry is the y -axis. Use the standard form $\text{\hspace{0.17em}}{x}^{2}=4py.$
2. Multiply $\text{\hspace{0.17em}}4p.$
3. Substitute the value from Step 2 into the equation determined in Step 1.

## Writing the equation of a parabola in standard form given its focus and directrix

What is the equation for the parabola    with focus $\text{\hspace{0.17em}}\left(-\frac{1}{2},0\right)\text{\hspace{0.17em}}$ and directrix     $\text{\hspace{0.17em}}x=\frac{1}{2}?$

The focus has the form $\text{\hspace{0.17em}}\left(p,0\right),$ so the equation will have the form $\text{\hspace{0.17em}}{y}^{2}=4px.$

• Multiplying $\text{\hspace{0.17em}}4p,$ we have $\text{\hspace{0.17em}}4p=4\left(-\frac{1}{2}\right)=-2.$
• Substituting for $\text{\hspace{0.17em}}4p,$ we have $\text{\hspace{0.17em}}{y}^{2}=4px=-2x.$

Therefore, the equation for the parabola is $\text{\hspace{0.17em}}{y}^{2}=-2x.$

What is the equation for the parabola with focus $\text{\hspace{0.17em}}\left(0,\frac{7}{2}\right)\text{\hspace{0.17em}}$ and directrix $\text{\hspace{0.17em}}y=-\frac{7}{2}?$

${x}^{2}=14y.$

## Graphing parabolas with vertices not at the origin

Like other graphs we’ve worked with, the graph of a parabola can be translated. If a parabola is translated $\text{\hspace{0.17em}}h\text{\hspace{0.17em}}$ units horizontally and $\text{\hspace{0.17em}}k\text{\hspace{0.17em}}$ units vertically, the vertex will be $\text{\hspace{0.17em}}\left(h,k\right).\text{\hspace{0.17em}}$ This translation results in the standard form of the equation we saw previously with $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ replaced by $\text{\hspace{0.17em}}\left(x-h\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ replaced by $\text{\hspace{0.17em}}\left(y-k\right).$

To graph parabolas with a vertex $\text{\hspace{0.17em}}\left(h,k\right)\text{\hspace{0.17em}}$ other than the origin, we use the standard form $\text{\hspace{0.17em}}{\left(y-k\right)}^{2}=4p\left(x-h\right)\text{\hspace{0.17em}}$ for parabolas that have an axis of symmetry parallel to the x -axis, and $\text{\hspace{0.17em}}{\left(x-h\right)}^{2}=4p\left(y-k\right)\text{\hspace{0.17em}}$ for parabolas that have an axis of symmetry parallel to the y -axis. These standard forms are given below, along with their general graphs and key features.

## Standard forms of parabolas with vertex ( h , k )

[link] and [link] summarize the standard features of parabolas with a vertex at a point $\text{\hspace{0.17em}}\left(h,k\right).$

 Axis of Symmetry Equation Focus Directrix Endpoints of Latus Rectum $y=k$ ${\left(y-k\right)}^{2}=4p\left(x-h\right)$ $x=h-p$ $x=h$ ${\left(x-h\right)}^{2}=4p\left(y-k\right)$ $y=k-p$

How look for the general solution of a trig function
stock therom F=(x2+y2) i-2xy J jaha x=a y=o y=b
root under 3-root under 2 by 5 y square
The sum of the first n terms of a certain series is 2^n-1, Show that , this series is Geometric and Find the formula of the n^th
cosA\1+sinA=secA-tanA
why two x + seven is equal to nineteen.
The numbers cannot be combined with the x
Othman
2x + 7 =19
humberto
2x +7=19. 2x=19 - 7 2x=12 x=6
Yvonne
because x is 6
SAIDI
what is the best practice that will address the issue on this topic? anyone who can help me. i'm working on my action research.
simplify each radical by removing as many factors as possible (a) √75
how is infinity bidder from undefined?
what is the value of x in 4x-2+3
give the complete question
Shanky
4x=3-2 4x=1 x=1+4 x=5 5x
Olaiya
hi can you give another equation I'd like to solve it
Daniel
what is the value of x in 4x-2+3
Olaiya
if 4x-2+3 = 0 then 4x = 2-3 4x = -1 x = -(1÷4) is the answer.
Jacob
4x-2+3 4x=-3+2 4×=-1 4×/4=-1/4
LUTHO
then x=-1/4
LUTHO
4x-2+3 4x=-3+2 4x=-1 4x÷4=-1÷4 x=-1÷4
LUTHO
A research student is working with a culture of bacteria that doubles in size every twenty minutes. The initial population count was  1350  bacteria. Rounding to five significant digits, write an exponential equation representing this situation. To the nearest whole number, what is the population size after  3  hours?
v=lbh calculate the volume if i.l=5cm, b=2cm ,h=3cm
Need help with math
Peya
can you help me on this topic of Geometry if l help you
litshani
( cosec Q _ cot Q ) whole spuare = 1_cosQ / 1+cosQ
A guy wire for a suspension bridge runs from the ground diagonally to the top of the closest pylon to make a triangle. We can use the Pythagorean Theorem to find the length of guy wire needed. The square of the distance between the wire on the ground and the pylon on the ground is 90,000 feet. The square of the height of the pylon is 160,000 feet. So, the length of the guy wire can be found by evaluating √(90000+160000). What is the length of the guy wire?
the indicated sum of a sequence is known as