# 5.5 Zeros of polynomial functions  (Page 7/14)

 Page 7 / 14

A shipping container in the shape of a rectangular solid must have a volume of 84 cubic meters. The client tells the manufacturer that, because of the contents, the length of the container must be one meter longer than the width, and the height must be one meter greater than twice the width. What should the dimensions of the container be?

3 meters by 4 meters by 7 meters

Access these online resources for additional instruction and practice with zeros of polynomial functions.

## Key concepts

• To find $\text{\hspace{0.17em}}f\left(k\right),\text{\hspace{0.17em}}$ determine the remainder of the polynomial $\text{\hspace{0.17em}}f\left(x\right)\text{\hspace{0.17em}}$ when it is divided by $\text{\hspace{0.17em}}x-k.\text{\hspace{0.17em}}$ This is known as the Remainder Theorem. See [link] .
• According to the Factor Theorem, $\text{\hspace{0.17em}}k\text{\hspace{0.17em}}$ is a zero of $\text{\hspace{0.17em}}f\left(x\right)\text{\hspace{0.17em}}$ if and only if $\text{\hspace{0.17em}}\left(x-k\right)\text{\hspace{0.17em}}$ is a factor of $\text{\hspace{0.17em}}f\left(x\right).$ See [link] .
• According to the Rational Zero Theorem, each rational zero of a polynomial function with integer coefficients will be equal to a factor of the constant term divided by a factor of the leading coefficient. See [link] and [link] .
• When the leading coefficient is 1, the possible rational zeros are the factors of the constant term.
• Synthetic division can be used to find the zeros of a polynomial function. See [link] .
• According to the Fundamental Theorem, every polynomial function has at least one complex zero. See [link] .
• Every polynomial function with degree greater than 0 has at least one complex zero.
• Allowing for multiplicities, a polynomial function will have the same number of factors as its degree. Each factor will be in the form $\text{\hspace{0.17em}}\left(x-c\right),\text{\hspace{0.17em}}$ where $\text{\hspace{0.17em}}c\text{\hspace{0.17em}}$ is a complex number. See [link] .
• The number of positive real zeros of a polynomial function is either the number of sign changes of the function or less than the number of sign changes by an even integer.
• The number of negative real zeros of a polynomial function is either the number of sign changes of $\text{\hspace{0.17em}}f\left(-x\right)\text{\hspace{0.17em}}$ or less than the number of sign changes by an even integer. See [link] .
• Polynomial equations model many real-world scenarios. Solving the equations is easiest done by synthetic division. See [link] .

## Verbal

Describe a use for the Remainder Theorem.

The theorem can be used to evaluate a polynomial.

Explain why the Rational Zero Theorem does not guarantee finding zeros of a polynomial function.

What is the difference between rational and real zeros?

Rational zeros can be expressed as fractions whereas real zeros include irrational numbers.

If Descartes’ Rule of Signs reveals a no change of signs or one sign of changes, what specific conclusion can be drawn?

If synthetic division reveals a zero, why should we try that value again as a possible solution?

Polynomial functions can have repeated zeros, so the fact that number is a zero doesn’t preclude it being a zero again.

## Algebraic

For the following exercises, use the Remainder Theorem to find the remainder.

$\left({x}^{4}-9{x}^{2}+14\right)÷\left(x-2\right)$

$\left(3{x}^{3}-2{x}^{2}+x-4\right)÷\left(x+3\right)$

$-106$

$\left({x}^{4}+5{x}^{3}-4x-17\right)÷\left(x+1\right)$

$\left(-3{x}^{2}+6x+24\right)÷\left(x-4\right)$

$\text{\hspace{0.17em}}0\text{\hspace{0.17em}}$

$\left(5{x}^{5}-4{x}^{4}+3{x}^{3}-2{x}^{2}+x-1\right)÷\left(x+6\right)$

A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
The sequence is {1,-1,1-1.....} has
how can we solve this problem
Sin(A+B) = sinBcosA+cosBsinA
Prove it
Eseka
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
7.5 and 37.5
Nando
find the sum of 28th term of the AP 3+10+17+---------
I think you should say "28 terms" instead of "28th term"
Vedant
the 28th term is 175
Nando
192
Kenneth
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
write down the polynomial function with root 1/3,2,-3 with solution
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
what is the answer to dividing negative index
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
give me the waec 2019 questions