<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Use the Law of Sines to solve oblique triangles.
  • Find the area of an oblique triangle using the sine function.
  • Solve applied problems using the Law of Sines.

Suppose two radar stations located 20 miles apart each detect an aircraft between them. The angle of elevation measured by the first station is 35 degrees, whereas the angle of elevation    measured by the second station is 15 degrees. How can we determine the altitude of the aircraft? We see in [link] that the triangle formed by the aircraft and the two stations is not a right triangle, so we cannot use what we know about right triangles. In this section, we will find out how to solve problems involving non-right triangles .

A diagram of a triangle where the vertices are the first ground station, the second ground station, and the airplane in the air between them. The angle between the first ground station and the plane is 15 degrees, and the angle between the second station and the airplane is 35 degrees. The side between the two stations is of length 20 miles. There is a dotted line perpendicular to the ground side connecting the airplane vertex with the ground - an altitude line.

Using the law of sines to solve oblique triangles

In any triangle, we can draw an altitude    , a perpendicular line from one vertex to the opposite side, forming two right triangles. It would be preferable, however, to have methods that we can apply directly to non-right triangles without first having to create right triangles.

Any triangle that is not a right triangle is an oblique triangle    . Solving an oblique triangle means finding the measurements of all three angles and all three sides. To do so, we need to start with at least three of these values, including at least one of the sides. We will investigate three possible oblique triangle problem situations:

  1. ASA (angle-side-angle) We know the measurements of two angles and the included side. See [link] .
    An oblique triangle consisting of angles alpha, beta, and gamma. Alpha and gamma's values are known, as is the side opposite beta, between alpha and gamma.
  2. AAS (angle-angle-side) We know the measurements of two angles and a side that is not between the known angles. See [link] .
    An oblique triangle consisting of angles alpha, beta, and gamma. Alpha and gamma are known, as is the side opposite alpha, between beta and gamma.
  3. SSA (side-side-angle) We know the measurements of two sides and an angle that is not between the known sides. See [link] .
    An oblique triangle consisting of angles alpha, beta, and gamma. Alpha is the only angle known. Two sides are known. The first is opposite alpha, between beta and gamma, and the second is opposite gamma, between alpha and beta.

Knowing how to approach each of these situations enables us to solve oblique triangles without having to drop a perpendicular to form two right triangles. Instead, we can use the fact that the ratio of the measurement of one of the angles to the length of its opposite side will be equal to the other two ratios of angle measure to opposite side. Let’s see how this statement is derived by considering the triangle shown in [link] .

An oblique triangle consisting of sides a, b, and c, and angles alpha, beta, and gamma. Side c is opposide angle gamma and is the horizontal base of the triangle. Side b is opposite angle beta, and side a is opposite angle alpha. There is a dotted perpendicular line - an altitude - from the gamma angle to the horizontal base c.

Using the right triangle relationships, we know that sin α = h b and sin β = h a . Solving both equations for h gives two different expressions for h .

h = b sin α  and  h = a sin β

We then set the expressions equal to each other.

            b sin α = a sin β   ( 1 a b ) ( b sin α ) = ( a sin β ) ( 1 a b ) Multiply both sides by 1 a b .                sin α a = sin β b

Similarly, we can compare the other ratios.

sin α a = sin γ c  and  sin β b = sin γ c

Collectively, these relationships are called the Law of Sines .

sin α a = sin β b = sin λ c

Note the standard way of labeling triangles: angle α (alpha) is opposite side a ; angle β (beta) is opposite side b ; and angle γ (gamma) is opposite side c . See [link] .

While calculating angles and sides, be sure to carry the exact values through to the final answer. Generally, final answers are rounded to the nearest tenth, unless otherwise specified.

A triangle with standard labels.

Law of sines

Given a triangle with angles and opposite sides labeled as in [link] , the ratio of the measurement of an angle to the length of its opposite side will be equal to the other two ratios of angle measure to opposite side. All proportions will be equal. The Law of Sines    is based on proportions and is presented symbolically two ways.

sin α a = sin β b = sin γ c
a sin α = b sin β = c sin γ

To solve an oblique triangle, use any pair of applicable ratios.

Questions & Answers

A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
Kaitlyn Reply
The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Eseka
Please prove it
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
Arleathia Reply
7.5 and 37.5
Nando
find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
Vedant
the 28th term is 175
Nando
192
Kenneth
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
SANDESH Reply
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask