<< Chapter < Page Chapter >> Page >

Given a polynomial and a binomial, use long division to divide the polynomial by the binomial.

  1. Set up the division problem.
  2. Determine the first term of the quotient by dividing the leading term of the dividend by the leading term of the divisor.
  3. Multiply the answer by the divisor and write it below the like terms of the dividend.
  4. Subtract the bottom binomial    from the top binomial.
  5. Bring down the next term of the dividend.
  6. Repeat steps 2–5 until reaching the last term of the dividend.
  7. If the remainder is non-zero, express as a fraction using the divisor as the denominator.

Using long division to divide a second-degree polynomial

Divide 5 x 2 + 3 x 2 by x + 1.

The quotient is 5 x 2. The remainder is 0. We write the result as

5 x 2 + 3 x 2 x + 1 = 5 x 2

or

5 x 2 + 3 x 2 = ( x + 1 ) ( 5 x 2 )
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Using long division to divide a third-degree polynomial

Divide 6 x 3 + 11 x 2 31 x + 15 by 3 x 2.

There is a remainder of 1. We can express the result as:

6 x 3 + 11 x 2 31 x + 15 3 x 2 = 2 x 2 + 5 x 7 + 1 3 x 2
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Divide 16 x 3 12 x 2 + 20 x 3 by 4 x + 5.

4 x 2 8 x + 15 78 4 x + 5

Got questions? Get instant answers now!

Using synthetic division to divide polynomials

As we’ve seen, long division of polynomials can involve many steps and be quite cumbersome. Synthetic division is a shorthand method of dividing polynomials for the special case of dividing by a linear factor whose leading coefficient is 1.

To illustrate the process, recall the example at the beginning of the section.

Divide 2 x 3 3 x 2 + 4 x + 5 by x + 2 using the long division algorithm.

The final form of the process looked like this:

There is a lot of repetition in the table. If we don’t write the variables but, instead, line up their coefficients in columns under the division sign and also eliminate the partial products, we already have a simpler version of the entire problem.

Synthetic division of the polynomial 2x^3-3x^2+4x+5 by x+2 in which it only contains the coefficients of each polynomial.

Synthetic division carries this simplification even a few more steps. Collapse the table by moving each of the rows up to fill any vacant spots. Also, instead of dividing by 2, as we would in division of whole numbers, then multiplying and subtracting the middle product, we change the sign of the “divisor” to –2, multiply and add. The process starts by bringing down the leading coefficient.

Synthetic division of the polynomial 2x^3-3x^2+4x+5 by x+2 in which it only contains the coefficients of each polynomial.

We then multiply it by the “divisor” and add, repeating this process column by column, until there are no entries left. The bottom row represents the coefficients of the quotient; the last entry of the bottom row is the remainder. In this case, the quotient is 2 x 2 7 x + 18 and the remainder is –31. The process will be made more clear in [link] .

Synthetic division

Synthetic division is a shortcut that can be used when the divisor is a binomial in the form x k where k is a real number. In synthetic division    , only the coefficients are used in the division process.

Given two polynomials, use synthetic division to divide.

  1. Write k for the divisor.
  2. Write the coefficients of the dividend.
  3. Bring the lead coefficient down.
  4. Multiply the lead coefficient by k . Write the product in the next column.
  5. Add the terms of the second column.
  6. Multiply the result by k . Write the product in the next column.
  7. Repeat steps 5 and 6 for the remaining columns.
  8. Use the bottom numbers to write the quotient. The number in the last column is the remainder and has degree 0, the next number from the right has degree 1, the next number from the right has degree 2, and so on.

Questions & Answers

A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
Kaitlyn Reply
The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Eseka
Please prove it
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
Arleathia Reply
7.5 and 37.5
Nando
find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
Vedant
the 28th term is 175
Nando
192
Kenneth
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
SANDESH Reply
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask