# 7.4 The other trigonometric functions  (Page 2/14)

 Page 2 / 14

The point $\text{\hspace{0.17em}}\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)\text{\hspace{0.17em}}$ is on the unit circle, as shown in [link] . Find $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}t,\mathrm{cos}\text{\hspace{0.17em}}t,\mathrm{tan}\text{\hspace{0.17em}}t,\mathrm{sec}\text{\hspace{0.17em}}t,\mathrm{csc}\text{\hspace{0.17em}}t,$ and $\text{\hspace{0.17em}}\mathrm{cot}\text{\hspace{0.17em}}t.$

$\mathrm{sin}t=-\frac{\sqrt{2}}{2},\mathrm{cos}t=\frac{\sqrt{2}}{2},\mathrm{tan}t=-1,sect=\sqrt{2},\mathrm{csc}t=-\sqrt{2},\mathrm{cot}t=-1$

## Finding the trigonometric functions of an angle

Find $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}t,\mathrm{cos}\text{\hspace{0.17em}}t,\mathrm{tan}\text{\hspace{0.17em}}t,\mathrm{sec}\text{\hspace{0.17em}}t,\mathrm{csc}\text{\hspace{0.17em}}t,$ and $\text{\hspace{0.17em}}\mathrm{cot}\text{\hspace{0.17em}}t.\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}t=\frac{\pi }{6}.$

We have previously used the properties of equilateral triangles to demonstrate that $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\frac{\pi }{6}=\frac{1}{2}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\frac{\pi }{6}=\frac{\sqrt{3}}{2}.$ We can use these values and the definitions of tangent, secant, cosecant, and cotangent as functions of sine and cosine to find the remaining function values.

$\begin{array}{cccc}\hfill \text{tan}\text{\hspace{0.17em}}\frac{\pi }{6}& =\frac{\text{sin}\text{\hspace{0.17em}}\frac{\pi }{6}}{\text{cos}\text{\hspace{0.17em}}\frac{\pi }{6}}\hfill & & \\ & =\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}\hfill & =\frac{1}{\sqrt{3}}\hfill & =\frac{\sqrt{3}}{3}\hfill \\ \hfill \text{sec}\text{\hspace{0.17em}}\frac{\pi }{6}& =\frac{1}{\text{cos}\text{\hspace{0.17em}}\frac{\pi }{6}}\hfill & & \\ & =\frac{1}{\frac{\sqrt{3}}{2}}\hfill & =\frac{2}{\sqrt{3}}\hfill & =\frac{2\sqrt{3}}{3}\hfill \\ \hfill \mathrm{csc}\text{\hspace{0.17em}}\frac{\pi }{6}& =\frac{1}{\mathrm{sin}\text{\hspace{0.17em}}\frac{\pi }{6}}\hfill & =\frac{1}{\frac{1}{2}}\hfill & =2\hfill \\ \hfill \text{cot}\text{\hspace{0.17em}}\frac{\pi }{6}& =\frac{\text{cos}\text{\hspace{0.17em}}\frac{\pi }{6}}{\text{sin}\text{\hspace{0.17em}}\frac{\pi }{6}}\hfill & & \\ & =\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}\hfill & =\sqrt{3}\hfill & \end{array}$

Find $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}t,\mathrm{cos}\text{\hspace{0.17em}}t,\mathrm{tan}\text{\hspace{0.17em}}t,\mathrm{sec}\text{\hspace{0.17em}}t,\mathrm{csc}\text{\hspace{0.17em}}t,$ and $\text{\hspace{0.17em}}\mathrm{cot}\text{\hspace{0.17em}}t.\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}t=\frac{\pi }{3}.$

$\begin{array}{c}\mathrm{sin}\frac{\pi }{3}=\frac{\sqrt{3}}{2}\hfill \\ \mathrm{cos}\frac{\pi }{3}=\frac{1}{2}\hfill \\ \mathrm{tan}\frac{\pi }{3}=\sqrt{3}\hfill \\ \mathrm{sec}\frac{\pi }{3}=2\hfill \\ \mathrm{csc}\frac{\pi }{3}=\frac{2\sqrt{3}}{3}\hfill \\ \mathrm{cot}\frac{\pi }{3}=\frac{\sqrt{3}}{3}\hfill \end{array}$

Because we know the sine and cosine values for the common first-quadrant angles, we can find the other function values for those angles as well by setting $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ equal to the cosine and $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ equal to the sine and then using the definitions of tangent, secant, cosecant, and cotangent. The results are shown in [link] .

Angle $0$
Cosine 1 $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$ 0
Sine 0 $\frac{1}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$ 1
Tangent 0 $\frac{\sqrt{3}}{3}$ 1 $\sqrt{3}$ Undefined
Secant 1 $\frac{2\sqrt{3}}{3}$ $\sqrt{2}$ 2 Undefined
Cosecant Undefined 2 $\sqrt{2}$ $\frac{2\sqrt{3}}{3}$ 1
Cotangent Undefined $\sqrt{3}$ 1 $\frac{\sqrt{3}}{3}$ 0

## Using reference angles to evaluate tangent, secant, cosecant, and cotangent

We can evaluate trigonometric functions of angles outside the first quadrant using reference angles as we have already done with the sine and cosine functions. The procedure is the same: Find the reference angle    formed by the terminal side of the given angle with the horizontal axis. The trigonometric function values for the original angle will be the same as those for the reference angle, except for the positive or negative sign, which is determined by x - and y -values in the original quadrant. [link] shows which functions are positive in which quadrant.

To help remember which of the six trigonometric functions are positive in each quadrant, we can use the mnemonic phrase “A Smart Trig Class.” Each of the four words in the phrase corresponds to one of the four quadrants, starting with quadrant I and rotating counterclockwise. In quadrant I, which is “ A ,” a ll of the six trigonometric functions are positive. In quadrant II, “ S mart,” only s ine and its reciprocal function, cosecant, are positive. In quadrant III, “ T rig,” only t angent and its reciprocal function, cotangent, are positive. Finally, in quadrant IV, “ C lass,” only c osine and its reciprocal function, secant, are positive.

Given an angle not in the first quadrant, use reference angles to find all six trigonometric functions.

1. Measure the angle formed by the terminal side of the given angle and the horizontal axis. This is the reference angle.
2. Evaluate the function at the reference angle.
3. Observe the quadrant where the terminal side of the original angle is located. Based on the quadrant, determine whether the output is positive or negative.

## Using reference angles to find trigonometric functions

Use reference angles to find all six trigonometric functions of $\text{\hspace{0.17em}}-\frac{5\pi }{6}.$

The angle between this angle’s terminal side and the x -axis is $\text{\hspace{0.17em}}\frac{\pi }{6},$ so that is the reference angle. Since $\text{\hspace{0.17em}}-\frac{5\pi }{6}\text{\hspace{0.17em}}$ is in the third quadrant, where both $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ are negative, cosine, sine, secant, and cosecant will be negative, while tangent and cotangent will be positive.

$\begin{array}{cccc}\hfill \text{cos}\left(-\frac{5\pi }{6}\right)& =-\frac{\sqrt{3}}{2},\text{sin}\left(-\frac{5\pi }{6}\right)\hfill & =-\frac{1}{2},\text{tan}\left(\frac{5\pi }{6}\right)\hfill & =\frac{\sqrt{3}}{3},\hfill \\ \hfill \text{sec}\left(-\frac{5\pi }{6}\right)& =-\frac{2\sqrt{3}}{3},\text{csc}\left(-\frac{5\pi }{6}\right)\hfill & =-2,\text{cot}\left(-\frac{5\pi }{6}\right)\hfill & =\sqrt{3}\hfill \end{array}$

x exposant 4 + 4 x exposant 3 + 8 exposant 2 + 4 x + 1 = 0
x exposent4+4x exposent3+8x exposent2+4x+1=0
HERVE
How can I solve for a domain and a codomains in a given function?
ranges
EDWIN
Thank you I mean range sir.
Oliver
proof for set theory
don't you know?
Inkoom
find to nearest one decimal place of centimeter the length of an arc of circle of radius length 12.5cm and subtending of centeral angle 1.6rad
factoring polynomial
find general solution of the Tanx=-1/root3,secx=2/root3
find general solution of the following equation
Nani
the value of 2 sin square 60 Cos 60
0.75
Lynne
0.75
Inkoom
when can I use sin, cos tan in a giving question
depending on the question
Nicholas
I am a carpenter and I have to cut and assemble a conventional roof line for a new home. The dimensions are: width 30'6" length 40'6". I want a 6 and 12 pitch. The roof is a full hip construction. Give me the L,W and height of rafters for the hip, hip jacks also the length of common jacks.
John
I want to learn the calculations
where can I get indices
I need matrices
Nasasira
hi
Raihany
Hi
Solomon
need help
Raihany
maybe provide us videos
Nasasira
Raihany
Hello
Cromwell
a
Amie
What do you mean by a
Cromwell
nothing. I accidentally press it
Amie
you guys know any app with matrices?
Khay
Ok
Cromwell
Solve the x? x=18+(24-3)=72
x-39=72 x=111
Suraj
Solve the formula for the indicated variable P=b+4a+2c, for b
Need help with this question please
b=-4ac-2c+P
Denisse
b=p-4a-2c
Suddhen
b= p - 4a - 2c
Snr
p=2(2a+C)+b
Suraj
b=p-2(2a+c)
Tapiwa
P=4a+b+2C
COLEMAN
b=P-4a-2c
COLEMAN
like Deadra, show me the step by step order of operation to alive for b
John
A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
The sequence is {1,-1,1-1.....} has