<< Chapter < Page Chapter >> Page >

Using the law of cosines to solve a communication problem

On many cell phones with GPS, an approximate location can be given before the GPS signal is received. This is accomplished through a process called triangulation, which works by using the distances from two known points. Suppose there are two cell phone towers within range of a cell phone. The two towers are located 6000 feet apart along a straight highway, running east to west, and the cell phone is north of the highway. Based on the signal delay, it can be determined that the signal is 5050 feet from the first tower and 2420 feet from the second tower. Determine the position of the cell phone north and east of the first tower, and determine how far it is from the highway.

For simplicity, we start by drawing a diagram similar to [link] and labeling our given information.

A triangle formed between the two cell phone towers located on am east to west highway and the cellphone between and north of them. The side between the two towers is 6000 feet, the side between the left tower and the phone is 5050 feet, and the side between the right tower and the phone is 2420 feet. The angle between the 5050 and 6000 feet sides is labeled theta.

Using the Law of Cosines, we can solve for the angle θ . Remember that the Law of Cosines uses the square of one side to find the cosine of the opposite angle. For this example, let a = 2420 , b = 5050 , and c = 6000. Thus, θ corresponds to the opposite side a = 2420.

                                               a 2 = b 2 + c 2 2 b c cos θ                                        ( 2420 ) 2 = ( 5050 ) 2 + ( 6000 ) 2 2 ( 5050 ) ( 6000 ) cos θ ( 2420 ) 2 ( 5050 ) 2 ( 6000 ) 2 = 2 ( 5050 ) ( 6000 ) cos θ     ( 2420 ) 2 ( 5050 ) 2 ( 6000 ) 2 2 ( 5050 ) ( 6000 ) = cos θ                                            cos θ 0.9183                                                  θ cos 1 ( 0.9183 )                                                  θ 23.3°

To answer the questions about the phone’s position north and east of the tower, and the distance to the highway, drop a perpendicular from the position of the cell phone, as in [link] . This forms two right triangles, although we only need the right triangle that includes the first tower for this problem.

The triangle between the phone, the left tower, and a point between the phone and the highway between the towers. The side between the phone and the highway is perpendicular to the highway and is y feet. The highway side is x feet. The angle at the tower, previously labeled theta, is 23.3 degrees.

Using the angle θ = 23.3° and the basic trigonometric identities, we can find the solutions. Thus

  cos ( 23.3° ) = x 5050                     x = 5050 cos ( 23.3° )                     x 4638.15 feet      sin ( 23.3° ) = y 5050                     y = 5050 sin ( 23.3° )                     y 1997.5 feet

The cell phone is approximately 4638 feet east and 1998 feet north of the first tower, and 1998 feet from the highway.

Got questions? Get instant answers now!

Calculating distance traveled using a sas triangle

Returning to our problem at the beginning of this section, suppose a boat leaves port, travels 10 miles, turns 20 degrees, and travels another 8 miles. How far from port is the boat? The diagram is repeated here in [link] .

A triangle whose vertices are the boat, the port, and the turning point of the boat. The side between the port and the turning point is 10 mi, and the side between the turning point and the boat is 8 miles. The side between the port and the turning point is extended in a straight dotted line. The angle between the dotted line and the 8 mile side is 20 degrees.

The boat turned 20 degrees, so the obtuse angle of the non-right triangle is the supplemental angle, 180° 20° = 160° . With this, we can utilize the Law of Cosines to find the missing side of the obtuse triangle—the distance of the boat to the port.

x 2 = 8 2 + 10 2 2 ( 8 ) ( 10 ) cos ( 160° ) x 2 = 314.35 x = 314.35 x 17.7 miles

The boat is about 17.7 miles from port.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Using heron’s formula to find the area of a triangle

We already learned how to find the area of an oblique triangle when we know two sides and an angle. We also know the formula to find the area of a triangle using the base and the height. When we know the three sides, however, we can use Heron’s formula instead of finding the height. Heron of Alexandria was a geometer who lived during the first century A.D. He discovered a formula for finding the area of oblique triangles when three sides are known.

Questions & Answers

The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Eseka
Please prove it
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
Arleathia Reply
find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
Vedant
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
SANDESH Reply
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask