# 10.2 Non-right triangles: law of cosines  (Page 3/8)

 Page 3 / 8

## Using the law of cosines to solve a communication problem

On many cell phones with GPS, an approximate location can be given before the GPS signal is received. This is accomplished through a process called triangulation, which works by using the distances from two known points. Suppose there are two cell phone towers within range of a cell phone. The two towers are located 6000 feet apart along a straight highway, running east to west, and the cell phone is north of the highway. Based on the signal delay, it can be determined that the signal is 5050 feet from the first tower and 2420 feet from the second tower. Determine the position of the cell phone north and east of the first tower, and determine how far it is from the highway.

For simplicity, we start by drawing a diagram similar to [link] and labeling our given information.

Using the Law of Cosines, we can solve for the angle $\text{\hspace{0.17em}}\theta .\text{\hspace{0.17em}}$ Remember that the Law of Cosines uses the square of one side to find the cosine of the opposite angle. For this example, let $\text{\hspace{0.17em}}a=2420,b=5050,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}c=6000.\text{\hspace{0.17em}}$ Thus, $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ corresponds to the opposite side $\text{\hspace{0.17em}}a=2420.\text{\hspace{0.17em}}$

To answer the questions about the phone’s position north and east of the tower, and the distance to the highway, drop a perpendicular from the position of the cell phone, as in [link] . This forms two right triangles, although we only need the right triangle that includes the first tower for this problem.

Using the angle $\text{\hspace{0.17em}}\theta =23.3°\text{\hspace{0.17em}}$ and the basic trigonometric identities, we can find the solutions. Thus

The cell phone is approximately 4638 feet east and 1998 feet north of the first tower, and 1998 feet from the highway.

## Calculating distance traveled using a sas triangle

Returning to our problem at the beginning of this section, suppose a boat leaves port, travels 10 miles, turns 20 degrees, and travels another 8 miles. How far from port is the boat? The diagram is repeated here in [link] .

The boat turned 20 degrees, so the obtuse angle of the non-right triangle is the supplemental angle, $180°-20°=160°.\text{\hspace{0.17em}}$ With this, we can utilize the Law of Cosines to find the missing side of the obtuse triangle—the distance of the boat to the port.

$\begin{array}{l}\text{\hspace{0.17em}}{x}^{2}={8}^{2}+{10}^{2}-2\left(8\right)\left(10\right)\mathrm{cos}\left(160°\right)\hfill \\ \text{\hspace{0.17em}}{x}^{2}=314.35\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}x=\sqrt{314.35}\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}x\approx 17.7\text{\hspace{0.17em}}\text{miles}\hfill \end{array}$

The boat is about 17.7 miles from port.

## Using heron’s formula to find the area of a triangle

We already learned how to find the area of an oblique triangle when we know two sides and an angle. We also know the formula to find the area of a triangle using the base and the height. When we know the three sides, however, we can use Heron’s formula instead of finding the height. Heron of Alexandria was a geometer who lived during the first century A.D. He discovered a formula for finding the area of oblique triangles when three sides are known.

x exposant 4 + 4 x exposant 3 + 8 exposant 2 + 4 x + 1 = 0
x exposent4+4x exposent3+8x exposent2+4x+1=0
HERVE
How can I solve for a domain and a codomains in a given function?
ranges
EDWIN
Thank you I mean range sir.
Oliver
proof for set theory
don't you know?
Inkoom
find to nearest one decimal place of centimeter the length of an arc of circle of radius length 12.5cm and subtending of centeral angle 1.6rad
factoring polynomial
find general solution of the Tanx=-1/root3,secx=2/root3
find general solution of the following equation
Nani
the value of 2 sin square 60 Cos 60
0.75
Lynne
0.75
Inkoom
when can I use sin, cos tan in a giving question
depending on the question
Nicholas
I am a carpenter and I have to cut and assemble a conventional roof line for a new home. The dimensions are: width 30'6" length 40'6". I want a 6 and 12 pitch. The roof is a full hip construction. Give me the L,W and height of rafters for the hip, hip jacks also the length of common jacks.
John
I want to learn the calculations
where can I get indices
I need matrices
Nasasira
hi
Raihany
Hi
Solomon
need help
Raihany
maybe provide us videos
Nasasira
Raihany
Hello
Cromwell
a
Amie
What do you mean by a
Cromwell
nothing. I accidentally press it
Amie
you guys know any app with matrices?
Khay
Ok
Cromwell
Solve the x? x=18+(24-3)=72
x-39=72 x=111
Suraj
Solve the formula for the indicated variable P=b+4a+2c, for b
Need help with this question please
b=-4ac-2c+P
Denisse
b=p-4a-2c
Suddhen
b= p - 4a - 2c
Snr
p=2(2a+C)+b
Suraj
b=p-2(2a+c)
Tapiwa
P=4a+b+2C
COLEMAN
b=P-4a-2c
COLEMAN
like Deadra, show me the step by step order of operation to alive for b
John
A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
The sequence is {1,-1,1-1.....} has