# 3.1 Functions and function notation  (Page 10/21)

 Page 10 / 21

Why does the horizontal line test tell us whether the graph of a function is one-to-one?

When a horizontal line intersects the graph of a function more than once, that indicates that for that output there is more than one input. A function is one-to-one if each output corresponds to only one input.

## Algebraic

For the following exercises, determine whether the relation represents a function.

$\left\{\left(a,b\right),\left(b,c\right),\left(c,c\right)\right\}$

function

For the following exercises, determine whether the relation represents $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ as a function of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$

$5x+2y=10$

$y={x}^{2}$

function

$x={y}^{2}$

$3{x}^{2}+y=14$

function

$2x+{y}^{2}=6$

$y=-2{x}^{2}+40x$

function

$y=\frac{1}{x}$

$x=\frac{3y+5}{7y-1}$

function

$x=\sqrt{1-{y}^{2}}$

$y=\frac{3x+5}{7x-1}$

function

${x}^{2}+{y}^{2}=9$

$2xy=1$

function

$x={y}^{3}$

$y={x}^{3}$

function

$y=\sqrt{1-{x}^{2}}$

$x=±\sqrt{1-y}$

function

$y=±\sqrt{1-x}$

${y}^{2}={x}^{2}$

not a function

${y}^{3}={x}^{2}$

For the following exercises, evaluate the function $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ at the indicated values

$f\left(x\right)=2x-5$

$\begin{array}{cccc}f\left(-3\right)=-11;& f\left(2\right)=-1;& f\left(-a\right)=-2a-5;& -f\left(a\right)=-2a+5;\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(a+h\right)=2a+2h-5\end{array}$

$f\left(x\right)=-5{x}^{2}+2x-1$

$f\left(x\right)=\sqrt{2-x}+5$

$\begin{array}{cccc}f\left(-3\right)=\sqrt{5}+5;& f\left(2\right)=5;& f\left(-a\right)=\sqrt{2+a}+5;& -f\left(a\right)=-\sqrt{2-a}-5;\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(a+h\right)=\end{array}$ $\sqrt{2-a-h}+5$

$f\left(x\right)=\frac{6x-1}{5x+2}$

$f\left(x\right)=|x-1|-|x+1|$

Given the function $\text{\hspace{0.17em}}g\left(x\right)=5-{x}^{2},\text{\hspace{0.17em}}$ simplify $\text{\hspace{0.17em}}\frac{g\left(x+h\right)-g\left(x\right)}{h},\text{\hspace{0.17em}}h\ne 0.$

Given the function $\text{\hspace{0.17em}}g\left(x\right)={x}^{2}+2x,\text{\hspace{0.17em}}$ simplify $\text{\hspace{0.17em}}\frac{g\left(x\right)-g\left(a\right)}{x-a},\text{\hspace{0.17em}}x\ne a.$

$\frac{g\left(x\right)-g\left(a\right)}{x-a}=x+a+2,\text{\hspace{0.17em}}x\ne a$

Given the function $\text{\hspace{0.17em}}k\left(t\right)=2t-1\text{:}$

1. Evaluate $\text{\hspace{0.17em}}k\left(2\right).$
2. Solve $\text{\hspace{0.17em}}k\left(t\right)=7.$

Given the function $\text{\hspace{0.17em}}f\left(x\right)=8-3x\text{:}$

1. Evaluate $\text{\hspace{0.17em}}f\left(-2\right).$
2. Solve $\text{\hspace{0.17em}}f\left(x\right)=-1.$

a. $\text{\hspace{0.17em}}f\left(-2\right)=14;\text{\hspace{0.17em}}$ b. $\text{\hspace{0.17em}}x=3$

Given the function $\text{\hspace{0.17em}}p\left(c\right)={c}^{2}+c\text{:}$

1. Evaluate $\text{\hspace{0.17em}}p\left(-3\right).$
2. Solve $\text{\hspace{0.17em}}p\left(c\right)=2.$

Given the function $\text{\hspace{0.17em}}f\left(x\right)={x}^{2}-3x\text{:}$

1. Evaluate $\text{\hspace{0.17em}}f\left(5\right).$
2. Solve $\text{\hspace{0.17em}}f\left(x\right)=4.$

a. $\text{\hspace{0.17em}}f\left(5\right)=10;\text{\hspace{0.17em}}$ b. or

Given the function $\text{\hspace{0.17em}}f\left(x\right)=\sqrt{x+2}\text{:}$

1. Evaluate $\text{\hspace{0.17em}}f\left(7\right).$
2. Solve $\text{\hspace{0.17em}}f\left(x\right)=4.$

Consider the relationship $\text{\hspace{0.17em}}3r+2t=18.$

1. Write the relationship as a function $\text{\hspace{0.17em}}r=f\left(t\right).$
2. Evaluate $\text{\hspace{0.17em}}f\left(-3\right).$
3. Solve $\text{\hspace{0.17em}}f\left(t\right)=2.$

a. $\text{\hspace{0.17em}}f\left(t\right)=6-\frac{2}{3}t;\text{\hspace{0.17em}}$ b. $\text{\hspace{0.17em}}f\left(-3\right)=8;\text{\hspace{0.17em}}$ c. $\text{\hspace{0.17em}}t=6\text{\hspace{0.17em}}$

## Graphical

For the following exercises, use the vertical line test to determine which graphs show relations that are functions.

not a function

function

function

function

function

function

Given the following graph,

• Evaluate $\text{\hspace{0.17em}}f\left(-1\right).$
• Solve for $\text{\hspace{0.17em}}f\left(x\right)=3.$

Given the following graph,

• Evaluate $\text{\hspace{0.17em}}f\left(0\right).$
• Solve for $\text{\hspace{0.17em}}f\left(x\right)=-3.$

a. $\text{\hspace{0.17em}}f\left(0\right)=1;\text{\hspace{0.17em}}$ b. or

Given the following graph,

• Evaluate $\text{\hspace{0.17em}}f\left(4\right).$
• Solve for $\text{\hspace{0.17em}}f\left(x\right)=1.$

For the following exercises, determine if the given graph is a one-to-one function.

not a function so it is also not a one-to-one function

one-to- one function

function, but not one-to-one

## Numeric

For the following exercises, determine whether the relation represents a function.

$\left\{\left(-1,-1\right),\left(-2,-2\right),\left(-3,-3\right)\right\}$

$\left\{\left(3,4\right),\left(4,5\right),\left(5,6\right)\right\}$

function

$\left\{\left(2,5\right),\left(7,11\right),\left(15,8\right),\left(7,9\right)\right\}$

For the following exercises, determine if the relation represented in table form represents $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ as a function of $\text{\hspace{0.17em}}x.$

 $x$ 5 10 15 $y$ 3 8 14

function

 $x$ 5 10 15 $y$ 3 8 8
 $x$ 5 10 10 $y$ 3 8 14

not a function

For the following exercises, use the function $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ represented in [link] .

 $x$ $f\left(x\right)$ 0 74 1 28 2 1 3 53 4 56 5 3 6 36 7 45 8 14 9 47

Evaluate $\text{\hspace{0.17em}}f\left(3\right).$

Solve $\text{\hspace{0.17em}}f\left(x\right)=1.$

$f\left(x\right)=1,\text{\hspace{0.17em}}x=2$

For the following exercises, evaluate the function $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ at the values $f\left(-2\right),\text{\hspace{0.17em}}f\left(-1\right),\text{\hspace{0.17em}}f\left(0\right),\text{\hspace{0.17em}}f\left(1\right),$ and $\text{\hspace{0.17em}}f\left(2\right).$

$f\left(x\right)=4-2x$

$f\left(x\right)=8-3x$

$\begin{array}{ccccc}f\left(-2\right)=14;& f\left(-1\right)=11;& f\left(0\right)=8;& f\left(1\right)=5;& f\left(2\right)=2\end{array}$

$f\left(x\right)=8{x}^{2}-7x+3$

$f\left(x\right)=3+\sqrt{x+3}$

$\begin{array}{ccccc}f\left(-2\right)=4;\text{ }& f\left(-1\right)=4.414;& f\left(0\right)=4.732;& f\left(1\right)=4.5;& f\left(2\right)=5.236\end{array}$

$f\left(x\right)=\frac{x-2}{x+3}$

$f\left(x\right)={3}^{x}$

$\begin{array}{ccccc}f\left(-2\right)=\frac{1}{9};& f\left(-1\right)=\frac{1}{3};& f\left(0\right)=1;& f\left(1\right)=3;& f\left(2\right)=9\end{array}$

For the following exercises, evaluate the expressions, given functions $f,\text{\hspace{0.17em}}\text{\hspace{0.17em}}g,$ and $\text{\hspace{0.17em}}h\text{:}$

• $f\left(x\right)=3x-2$
• $g\left(x\right)=5-{x}^{2}$
• $h\left(x\right)=-2{x}^{2}+3x-1$

$3f\left(1\right)-4g\left(-2\right)$

$f\left(\frac{7}{3}\right)-h\left(-2\right)$

20

## Technology

For the following exercises, graph $\text{\hspace{0.17em}}y={x}^{2}\text{\hspace{0.17em}}$ on the given viewing window. Determine the corresponding range for each viewing window. Show each graph.

$\left[-100,100\right]$

For the following exercises, graph $\text{\hspace{0.17em}}y={x}^{3}\text{\hspace{0.17em}}$ on the given viewing window. Determine the corresponding range for each viewing window. Show each graph.

For the following exercises, graph $\text{\hspace{0.17em}}y=\sqrt{x}\text{\hspace{0.17em}}$ on the given viewing window. Determine the corresponding range for each viewing window. Show each graph.

For the following exercises, graph $y=\sqrt[3]{x}$ on the given viewing window. Determine the corresponding range for each viewing window. Show each graph.

$\left[-0.001,\text{0.001}\right]$

$\left[-0.1,\text{0.1}\right]$

$\left[-1000,\text{1000}\right]$

$\left[-1,000,000,\text{1,000,000}\right]$

## Real-world applications

The amount of garbage, $\text{\hspace{0.17em}}G,\text{\hspace{0.17em}}$ produced by a city with population $\text{\hspace{0.17em}}p\text{\hspace{0.17em}}$ is given by $\text{\hspace{0.17em}}G=f\left(p\right).\text{\hspace{0.17em}}$ $G\text{\hspace{0.17em}}$ is measured in tons per week, and $\text{\hspace{0.17em}}p\text{\hspace{0.17em}}$ is measured in thousands of people.

1. The town of Tola has a population of 40,000 and produces 13 tons of garbage each week. Express this information in terms of the function $\text{\hspace{0.17em}}f.\text{\hspace{0.17em}}$
2. Explain the meaning of the statement $\text{\hspace{0.17em}}f\left(5\right)=2.$

The number of cubic yards of dirt, $\text{\hspace{0.17em}}D,\text{\hspace{0.17em}}$ needed to cover a garden with area $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ square feet is given by $\text{\hspace{0.17em}}D=g\left(a\right).$

1. A garden with area 5000 ft 2 requires 50 yd 3 of dirt. Express this information in terms of the function $\text{\hspace{0.17em}}g.$
2. Explain the meaning of the statement $\text{\hspace{0.17em}}g\left(100\right)=1.$

a. $\text{\hspace{0.17em}}g\left(5000\right)=50;$ b. The number of cubic yards of dirt required for a garden of 100 square feet is 1.

Let $\text{\hspace{0.17em}}f\left(t\right)\text{\hspace{0.17em}}$ be the number of ducks in a lake $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ years after 1990. Explain the meaning of each statement:

1. $f\left(5\right)=30$
2. $f\left(10\right)=40$

Let $\text{\hspace{0.17em}}h\left(t\right)\text{\hspace{0.17em}}$ be the height above ground, in feet, of a rocket $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ seconds after launching. Explain the meaning of each statement:

1. $h\left(1\right)=200$
2. $h\left(2\right)=350$

a. The height of a rocket above ground after 1 second is 200 ft. b. the height of a rocket above ground after 2 seconds is 350 ft.

Show that the function $\text{\hspace{0.17em}}f\left(x\right)=3{\left(x-5\right)}^{2}+7\text{\hspace{0.17em}}$ is not one-to-one.

what is the answer to dividing negative index
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
give me the waec 2019 questions
the polar co-ordinate of the point (-1, -1)
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
tanh`(x-iy) =A+iB, find A and B
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
1+cos²A/cos²A=2cosec²A-1
test for convergence the series 1+x/2+2!/9x3
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
Ajith
exponential series
Naveen
yeah
Morosi
prime number?
Morosi
what is subgroup
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1