Solving a linear equation involving the sine function
Find all possible exact solutions for the equation
$\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}t=\frac{1}{2}.$
Solving for all possible values of
t means that solutions include angles beyond the period of
$\text{\hspace{0.17em}}2\pi .\text{\hspace{0.17em}}$ From
[link] , we can see that the solutions are
$\text{\hspace{0.17em}}t=\frac{\pi}{6}\text{\hspace{0.17em}}$ and
$\text{\hspace{0.17em}}t=\frac{5\pi}{6}.\text{\hspace{0.17em}}$ But the problem is asking for all possible values that solve the equation. Therefore, the answer is
Solve exactly the following linear equation on the interval
$\text{\hspace{0.17em}}[0,2\pi ):\text{\hspace{0.17em}}2\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}x+1=0.$
Solving equations involving a single trigonometric function
When we are given equations that involve only one of the six trigonometric functions, their solutions involve using algebraic techniques and the unit circle (see
[link] ). We need to make several considerations when the equation involves trigonometric functions other than sine and cosine. Problems involving the reciprocals of the primary trigonometric functions need to be viewed from an algebraic perspective. In other words, we will write the reciprocal function, and solve for the angles using the function. Also, an equation involving the tangent function is slightly different from one containing a sine or cosine function. First, as we know, the period of tangent is
$\text{\hspace{0.17em}}\pi ,$ not
$\text{\hspace{0.17em}}2\pi .\text{\hspace{0.17em}}$ Further, the domain of tangent is all real numbers with the exception of odd integer multiples of
$\text{\hspace{0.17em}}\frac{\pi}{2},$ unless, of course, a problem places its own restrictions on the domain.
Solving a problem involving a single trigonometric function
Solve the problem exactly:
$\text{\hspace{0.17em}}2\text{\hspace{0.17em}}{\mathrm{sin}}^{2}\theta -1=0,0\le \theta <2\pi .$
As this problem is not easily factored, we will solve using the square root property. First, we use algebra to isolate
$\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\theta .\text{\hspace{0.17em}}$ Then we will find the angles.
Solving a trigonometric equation involving cosecant
Solve the following equation exactly:
$\text{\hspace{0.17em}}\mathrm{csc}\text{\hspace{0.17em}}\theta =-2,0\le \theta <4\pi .$
We want all values of
$\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ for which
$\text{\hspace{0.17em}}\mathrm{csc}\text{\hspace{0.17em}}\theta =-2\text{\hspace{0.17em}}$ over the interval
$\text{\hspace{0.17em}}0\le \theta <4\pi .$
Solve the equation exactly:
$\text{\hspace{0.17em}}\mathrm{tan}\left(\theta -\frac{\pi}{2}\right)=1,0\le \theta <2\pi .$
Recall that the tangent function has a period of
$\text{\hspace{0.17em}}\pi .\text{\hspace{0.17em}}$ On the interval
$\text{\hspace{0.17em}}\left[0,\pi \right),$ and at the angle of
$\text{\hspace{0.17em}}\frac{\pi}{4},$ the tangent has a value of 1. However, the angle we want is
$\text{\hspace{0.17em}}\left(\theta -\frac{\pi}{2}\right).\text{\hspace{0.17em}}$ Thus, if
$\text{\hspace{0.17em}}\mathrm{tan}\left(\frac{\pi}{4}\right)=1,$ then
Identify all solutions to the equation involving tangent
Identify all exact solutions to the equation
$\text{\hspace{0.17em}}2\left(\mathrm{tan}\text{\hspace{0.17em}}x+3\right)=5+\mathrm{tan}\text{\hspace{0.17em}}x,0\le x<2\pi .$
We can solve this equation using only algebra. Isolate the expression
$\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ on the left side of the equals sign.
There are two angles on the unit circle that have a tangent value of
$\text{\hspace{0.17em}}\mathrm{-1}\text{:}\theta =\frac{3\pi}{4}\text{\hspace{0.17em}}$ and
$\text{\hspace{0.17em}}\theta =\frac{7\pi}{4}.$
I am a carpenter and I have to cut and assemble a conventional roof line for a new home. The dimensions are: width 30'6" length 40'6". I want a 6 and 12 pitch. The roof is a full hip construction. Give me the L,W and height of rafters for the hip, hip jacks also the length of common jacks.
like Deadra, show me the step by step order of operation to alive for b
John
A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5) and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.