# 11.6 Solving systems with gaussian elimination  (Page 3/13)

 Page 3 / 13

## Solving a $\text{\hspace{0.17em}}2×2\text{\hspace{0.17em}}$ System by gaussian elimination

Solve the given system by Gaussian elimination.

First, we write this as an augmented matrix.

We want a 1 in row 1, column 1. This can be accomplished by interchanging row 1 and row 2.

${R}_{1}↔{R}_{2}\to \left[\begin{array}{rrr}\hfill 1& \hfill -1& \hfill \\ \hfill 2& \hfill 3& \hfill \end{array}|\begin{array}{rr}\hfill & \hfill \frac{1}{2}\\ \hfill & \hfill 6\end{array}\right]$

We now have a 1 as the first entry in row 1, column 1. Now let’s obtain a 0 in row 2, column 1. This can be accomplished by multiplying row 1 by $\text{\hspace{0.17em}}-2,$ and then adding the result to row 2.

$-2{R}_{1}+{R}_{2}={R}_{2}\to \left[\begin{array}{rrr}\hfill 1& \hfill -1& \hfill \\ \hfill 0& \hfill 5& \hfill \end{array}|\begin{array}{rr}\hfill & \hfill \frac{1}{2}\\ \hfill & \hfill 5\end{array}\right]$

We only have one more step, to multiply row 2 by $\text{\hspace{0.17em}}\frac{1}{5}.$

$\frac{1}{5}{R}_{2}={R}_{2}\to \left[\begin{array}{rrr}\hfill 1& \hfill -1& \hfill \\ \hfill 0& \hfill 1& \hfill \end{array}|\begin{array}{cc}& \frac{1}{2}\\ & 1\end{array}\right]$

Use back-substitution. The second row of the matrix represents $\text{\hspace{0.17em}}y=1.\text{\hspace{0.17em}}$ Back-substitute $\text{\hspace{0.17em}}y=1\text{\hspace{0.17em}}$ into the first equation.

The solution is the point $\left(\frac{3}{2},1\right).$

Solve the given system by Gaussian elimination.

$\left(2,\text{\hspace{0.17em}}1\right)$

## Using gaussian elimination to solve a system of equations

Use Gaussian elimination    to solve the given $\text{\hspace{0.17em}}2\text{\hspace{0.17em}}×\text{\hspace{0.17em}}2\text{\hspace{0.17em}}$ system of equations .

Write the system as an augmented matrix    .

Obtain a 1 in row 1, column 1. This can be accomplished by multiplying the first row by $\text{\hspace{0.17em}}\frac{1}{2}.$

Next, we want a 0 in row 2, column 1. Multiply row 1 by $\text{\hspace{0.17em}}-4\text{\hspace{0.17em}}$ and add row 1 to row 2.

The second row represents the equation $\text{\hspace{0.17em}}0=4.\text{\hspace{0.17em}}$ Therefore, the system is inconsistent and has no solution.

## Solving a dependent system

Solve the system of equations.

$\begin{array}{l}3x+4y=12\\ 6x+8y=24\end{array}$

Perform row operations    on the augmented matrix to try and achieve row-echelon form    .

$A=\left[\begin{array}{llll}3\hfill & \hfill & 4\hfill & \hfill \\ 6\hfill & \hfill & 8\hfill & \hfill \end{array}|\begin{array}{ll}\hfill & 12\hfill \\ \hfill & 24\hfill \end{array}\right]$
$\begin{array}{l}\hfill \\ \begin{array}{l}-\frac{1}{2}{R}_{2}+{R}_{1}={R}_{1}\to \left[\begin{array}{llll}0\hfill & \hfill & 0\hfill & \hfill \\ 6\hfill & \hfill & 8\hfill & \hfill \end{array}|\begin{array}{ll}\hfill & \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}0\hfill \\ \hfill & 24\hfill \end{array}\right]\hfill \\ {R}_{1}↔{R}_{2}\to \left[\begin{array}{llll}6\hfill & \hfill & 8\hfill & \hfill \\ 0\hfill & \hfill & 0\hfill & \hfill \end{array}|\begin{array}{ll}\hfill & 24\hfill \\ \hfill & \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}0\hfill \end{array}\right]\hfill \end{array}\hfill \end{array}$

The matrix ends up with all zeros in the last row: $\text{\hspace{0.17em}}0y=0.\text{\hspace{0.17em}}$ Thus, there are an infinite number of solutions and the system is classified as dependent. To find the generic solution, return to one of the original equations and solve for $\text{\hspace{0.17em}}y.$

So the solution to this system is $\text{\hspace{0.17em}}\left(x,3-\frac{3}{4}x\right).$

## Performing row operations on a 3×3 augmented matrix to obtain row-echelon form

Perform row operations on the given matrix to obtain row-echelon form.

The first row already has a 1 in row 1, column 1. The next step is to multiply row 1 by $\text{\hspace{0.17em}}-2\text{\hspace{0.17em}}$ and add it to row 2. Then replace row 2 with the result.

$-2{R}_{1}+{R}_{2}={R}_{2}\to \left[\begin{array}{rrrrrr}\hfill 1& \hfill & \hfill -3& \hfill & \hfill 4& \hfill \\ \hfill 0& \hfill & \hfill 1& \hfill & \hfill -2& \hfill \\ \hfill -3& \hfill & \hfill 3& \hfill & \hfill 4& \hfill \end{array}|\begin{array}{rr}\hfill & \hfill 3\\ \hfill & \hfill 0\\ \hfill & \hfill 6\end{array}\right]$

Next, obtain a zero in row 3, column 1.

$3{R}_{1}+{R}_{3}={R}_{3}\to \left[\begin{array}{rrrrrr}\hfill 1& \hfill & \hfill -3& \hfill & \hfill 4& \hfill \\ \hfill 0& \hfill & \hfill 1& \hfill & \hfill -2& \hfill \\ \hfill 0& \hfill & \hfill -6& \hfill & \hfill 16& \hfill \end{array}|\begin{array}{rr}\hfill & \hfill 3\\ \hfill & \hfill 0\\ \hfill & \hfill 15\end{array}\right]$

Next, obtain a zero in row 3, column 2.

$6{R}_{2}+{R}_{3}={R}_{3}\to \left[\begin{array}{rrrrrr}\hfill 1& \hfill & \hfill -3& \hfill & \hfill 4& \hfill \\ \hfill 0& \hfill & \hfill 1& \hfill & \hfill -2& \hfill \\ \hfill 0& \hfill & \hfill 0& \hfill & \hfill 4& \hfill \end{array}|\begin{array}{rr}\hfill & \hfill 3\\ \hfill & \hfill 0\\ \hfill & \hfill 15\end{array}\right]$

The last step is to obtain a 1 in row 3, column 3.

Write the system of equations in row-echelon form.

$\left[\text{\hspace{0.17em}}\begin{array}{ccc}\text{\hspace{0.17em}}1& -\frac{5}{2}& \text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{5}{2}\\ \text{​}\text{\hspace{0.17em}}\text{\hspace{0.17em}}0& \text{\hspace{0.17em}}\text{\hspace{0.17em}}1& 5\\ \text{\hspace{0.17em}}0& \text{\hspace{0.17em}}0& \text{\hspace{0.17em}}\text{\hspace{0.17em}}1\end{array}\text{\hspace{0.17em}}|\begin{array}{c}\frac{17}{2}\\ 9\\ 2\end{array}\right]$

## Solving a system of linear equations using matrices

We have seen how to write a system of equations with an augmented matrix    , and then how to use row operations and back-substitution to obtain row-echelon form    . Now, we will take row-echelon form a step farther to solve a 3 by 3 system of linear equations. The general idea is to eliminate all but one variable using row operations and then back-substitute to solve for the other variables.

## Solving a system of linear equations using matrices

Solve the system of linear equations using matrices.

$\begin{array}{c}\begin{array}{l}\hfill \\ \hfill \\ x\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}y\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}+\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}z=\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}8\hfill \end{array}\\ 2x\text{\hspace{0.17em}}\text{\hspace{0.17em}}+\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}3y\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}z=-2\\ 3x\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}2y\text{\hspace{0.17em}}\text{\hspace{0.17em}}-9z=\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}9\end{array}$

First, we write the augmented matrix.

Next, we perform row operations to obtain row-echelon form.

$\begin{array}{rrrrr}\hfill -2{R}_{1}+{R}_{2}={R}_{2}\to \left[\begin{array}{rrrrrr}\hfill 1& \hfill & \hfill -1& \hfill & \hfill 1& \hfill \\ \hfill 0& \hfill & \hfill 5& \hfill & \hfill -3& \hfill \\ \hfill 3& \hfill & \hfill -2& \hfill & \hfill -9& \hfill \end{array}|\begin{array}{rr}\hfill & \hfill 8\\ \hfill & \hfill -18\\ \hfill & \hfill 9\end{array}\right]& \hfill & \hfill & \hfill & \hfill -3{R}_{1}+{R}_{3}={R}_{3}\to \left[\begin{array}{rrrrrr}\hfill 1& \hfill & \hfill -1& \hfill & \hfill 1& \hfill \\ \hfill 0& \hfill & \hfill 5& \hfill & \hfill -3& \hfill \\ \hfill 0& \hfill & \hfill 1& \hfill & \hfill -12& \hfill \end{array}|\begin{array}{rr}\hfill & \hfill 8\\ \hfill & \hfill -18\\ \hfill & \hfill -15\end{array}\right]\end{array}$

The easiest way to obtain a 1 in row 2 of column 1 is to interchange $\text{\hspace{0.17em}}{R}_{2}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{R}_{3}.$

$\text{Interchange}\text{\hspace{0.17em}}{R}_{2}\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}{R}_{3}\to \left[\begin{array}{rrrrrrr}\hfill 1& \hfill & \hfill -1& \hfill & \hfill 1& \hfill & \hfill 8\\ \hfill 0& \hfill & \hfill 1& \hfill & \hfill -12& \hfill & \hfill -15\\ \hfill 0& \hfill & \hfill 5& \hfill & \hfill -3& \hfill & \hfill -18\end{array}\right]$

Then

$\begin{array}{l}\\ \begin{array}{rrrrr}\hfill -5{R}_{2}+{R}_{3}={R}_{3}\to \left[\begin{array}{rrrrrr}\hfill 1& \hfill & \hfill -1& \hfill & \hfill 1& \hfill \\ \hfill 0& \hfill & \hfill 1& \hfill & \hfill -12& \hfill \\ \hfill 0& \hfill & \hfill 0& \hfill & \hfill 57& \hfill \end{array}|\begin{array}{rr}\hfill & \hfill 8\\ \hfill & \hfill -15\\ \hfill & \hfill 57\end{array}\right]& \hfill & \hfill & \hfill & \hfill -\frac{1}{57}{R}_{3}={R}_{3}\to \left[\begin{array}{rrrrrr}\hfill 1& \hfill & \hfill -1& \hfill & \hfill 1& \hfill \\ \hfill 0& \hfill & \hfill 1& \hfill & \hfill -12& \hfill \\ \hfill 0& \hfill & \hfill 0& \hfill & \hfill 1& \hfill \end{array}|\begin{array}{rr}\hfill & \hfill 8\\ \hfill & \hfill -15\\ \hfill & \hfill 1\end{array}\right]\end{array}\end{array}$

The last matrix represents the equivalent system.

Using back-substitution, we obtain the solution as $\text{\hspace{0.17em}}\left(4,-3,1\right).$

#### Questions & Answers

x exposant 4 + 4 x exposant 3 + 8 exposant 2 + 4 x + 1 = 0
x exposent4+4x exposent3+8x exposent2+4x+1=0
HERVE
How can I solve for a domain and a codomains in a given function?
ranges
EDWIN
Thank you I mean range sir.
Oliver
proof for set theory
don't you know?
Inkoom
find to nearest one decimal place of centimeter the length of an arc of circle of radius length 12.5cm and subtending of centeral angle 1.6rad
factoring polynomial
find general solution of the Tanx=-1/root3,secx=2/root3
find general solution of the following equation
Nani
the value of 2 sin square 60 Cos 60
0.75
Lynne
0.75
Inkoom
when can I use sin, cos tan in a giving question
depending on the question
Nicholas
I am a carpenter and I have to cut and assemble a conventional roof line for a new home. The dimensions are: width 30'6" length 40'6". I want a 6 and 12 pitch. The roof is a full hip construction. Give me the L,W and height of rafters for the hip, hip jacks also the length of common jacks.
John
I want to learn the calculations
where can I get indices
I need matrices
Nasasira
hi
Raihany
Hi
Solomon
need help
Raihany
maybe provide us videos
Nasasira
Raihany
Hello
Cromwell
a
Amie
What do you mean by a
Cromwell
nothing. I accidentally press it
Amie
you guys know any app with matrices?
Khay
Ok
Cromwell
Solve the x? x=18+(24-3)=72
x-39=72 x=111
Suraj
Solve the formula for the indicated variable P=b+4a+2c, for b
Need help with this question please
b=-4ac-2c+P
Denisse
b=p-4a-2c
Suddhen
b= p - 4a - 2c
Snr
p=2(2a+C)+b
Suraj
b=p-2(2a+c)
Tapiwa
P=4a+b+2C
COLEMAN
b=P-4a-2c
COLEMAN
like Deadra, show me the step by step order of operation to alive for b
John
A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
The sequence is {1,-1,1-1.....} has By By By Jordon Humphreys By Sam Luong By    By   