# 7.2 Right triangle trigonometry  (Page 5/12)

 Page 5 / 12

How long a ladder is needed to reach a windowsill 50 feet above the ground if the ladder rests against the building making an angle of $\text{\hspace{0.17em}}\frac{5\pi }{12}\text{\hspace{0.17em}}$ with the ground? Round to the nearest foot.

Access these online resources for additional instruction and practice with right triangle trigonometry.

## Key equations

 Trigonometric Functions Reciprocal Trigonometric Functions Cofunction Identities

## Key concepts

• We can define trigonometric functions as ratios of the side lengths of a right triangle. See [link] .
• The same side lengths can be used to evaluate the trigonometric functions of either acute angle in a right triangle. See [link] .
• We can evaluate the trigonometric functions of special angles, knowing the side lengths of the triangles in which they occur. See [link] .
• Any two complementary angles could be the two acute angles of a right triangle.
• If two angles are complementary, the cofunction identities state that the sine of one equals the cosine of the other and vice versa. See [link] .
• We can use trigonometric functions of an angle to find unknown side lengths.
• Select the trigonometric function representing the ratio of the unknown side to the known side. See [link] .
• Right-triangle trigonometry facilitates the measurement of inaccessible heights and distances.
• The unknown height or distance can be found by creating a right triangle in which the unknown height or distance is one of the sides, and another side and angle are known. See [link] .

## Verbal

For the given right triangle, label the adjacent side, opposite side, and hypotenuse for the indicated angle.

When a right triangle with a hypotenuse of 1 is placed in a circle of radius 1, which sides of the triangle correspond to the x - and y -coordinates?

The tangent of an angle compares which sides of the right triangle?

The tangent of an angle is the ratio of the opposite side to the adjacent side.

What is the relationship between the two acute angles in a right triangle?

Explain the cofunction identity.

For example, the sine of an angle is equal to the cosine of its complement; the cosine of an angle is equal to the sine of its complement.

## Algebraic

For the following exercises, use cofunctions of complementary angles.

$\mathrm{cos}\left(34°\right)=\mathrm{sin}\left(___°\right)$

$\mathrm{cos}\left(\frac{\pi }{3}\right)=\mathrm{sin}\left(___\right)$

$\frac{\pi }{6}$

$\mathrm{csc}\left(21°\right)=\mathrm{sec}\left(___°\right)$

$\mathrm{tan}\left(\frac{\pi }{4}\right)=\mathrm{cot}\left(___\right)$

$\frac{\pi }{4}$

For the following exercises, find the lengths of the missing sides if side $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ is opposite angle $\text{\hspace{0.17em}}A,$ side $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ is opposite angle $\text{\hspace{0.17em}}B,$ and side $\text{\hspace{0.17em}}c\text{\hspace{0.17em}}$ is the hypotenuse.

$\mathrm{cos}\text{\hspace{0.17em}}B=\frac{4}{5},a=10$

$\mathrm{sin}\text{\hspace{0.17em}}B=\frac{1}{2},a=20$

$b=\frac{20\sqrt{3}}{3},c=\frac{40\sqrt{3}}{3}$

$\mathrm{tan}\text{\hspace{0.17em}}A=\frac{5}{12},b=6$

$\mathrm{tan}\text{\hspace{0.17em}}A=100,b=100$

$a=10,000,c=10,00.5$

what is the answer to dividing negative index
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
give me the waec 2019 questions
the polar co-ordinate of the point (-1, -1)
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
tanh`(x-iy) =A+iB, find A and B
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
1+cos²A/cos²A=2cosec²A-1
test for convergence the series 1+x/2+2!/9x3
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
Ajith
exponential series
Naveen
yeah
Morosi
prime number?
Morosi
what is subgroup
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1