<< Chapter < Page Chapter >> Page >

Rewriting quadratics in standard form

In [link] , the quadratic was easily solved by factoring. However, there are many quadratics that cannot be factored. We can solve these quadratics by first rewriting them in standard form.

Given a quadratic function, find the x - intercepts by rewriting in standard form .

  1. Substitute a and b into h = b 2 a .
  2. Substitute x = h into the general form of the quadratic function to find k .
  3. Rewrite the quadratic in standard form using h and k .
  4. Solve for when the output of the function will be zero to find the x - intercepts.

Finding the x -intercepts of a parabola

Find the x - intercepts of the quadratic function f ( x ) = 2 x 2 + 4 x 4.

We begin by solving for when the output will be zero.

0 = 2 x 2 + 4 x 4

Because the quadratic is not easily factorable in this case, we solve for the intercepts by first rewriting the quadratic in standard form.

f ( x ) = a ( x h ) 2 + k

We know that a = 2. Then we solve for h and k .

h = b 2 a k = f ( −1 ) = 4 2 ( 2 ) = 2 ( −1 ) 2 + 4 ( −1 ) 4 = −1 = −6

So now we can rewrite in standard form.

f ( x ) = 2 ( x + 1 ) 2 6

We can now solve for when the output will be zero.

0 = 2 ( x + 1 ) 2 6 6 = 2 ( x + 1 ) 2 3 = ( x + 1 ) 2 x + 1 = ± 3 x = 1 ± 3

The graph has x -intercepts at ( −1 3 , 0 ) and ( −1 + 3 , 0 ) .

We can check our work by graphing the given function on a graphing utility and observing the x - intercepts. See [link] .

Graph of a parabola which has the following x-intercepts (-2.732, 0) and (0.732, 0).
Got questions? Get instant answers now!
Got questions? Get instant answers now!

In a Try It , we found the standard and general form for the function g ( x ) = 13 + x 2 6 x . Now find the y - and x -intercepts (if any).

y -intercept at (0, 13), No x - intercepts

Got questions? Get instant answers now!

Applying the vertex and x -intercepts of a parabola

A ball is thrown upward from the top of a 40 foot high building at a speed of 80 feet per second. The ball’s height above ground can be modeled by the equation H ( t ) = 16 t 2 + 80 t + 40.

  1. When does the ball reach the maximum height?
  2. What is the maximum height of the ball?
  3. When does the ball hit the ground?
  1. The ball reaches the maximum height at the vertex of the parabola.
    h = 80 2 ( −16 ) = 80 32 = 5 2 = 2.5

    The ball reaches a maximum height after 2.5 seconds.

  2. To find the maximum height, find the y - coordinate of the vertex of the parabola.
    k = H ( b 2 a ) = H ( 2.5 ) = −16 ( 2.5 ) 2 + 80 ( 2.5 ) + 40 = 140

    The ball reaches a maximum height of 140 feet.

  3. To find when the ball hits the ground, we need to determine when the height is zero, H ( t ) = 0.

    We use the quadratic formula.

    t = −80 ± 80 2 4 ( −16 ) ( 40 ) 2 ( −16 ) = −80 ± 8960 −32

    Because the square root does not simplify nicely, we can use a calculator to approximate the values of the solutions.

    t = 80 8960 32 5.458 or t = 80 + 8960 32 0.458

    The second answer is outside the reasonable domain of our model, so we conclude the ball will hit the ground after about 5.458 seconds. See [link] .

    Graph of a negative parabola where x goes from -1 to 6.

    Note that the graph does not represent the physical path of the ball upward and downward. Keep the quantities on each axis in mind while interpreting the graph.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

A rock is thrown upward from the top of a 112-foot high cliff overlooking the ocean at a speed of 96 feet per second. The rock’s height above ocean can be modeled by the equation H ( t ) = −16 t 2 + 96 t + 112.

  1. When does the rock reach the maximum height?
  2. What is the maximum height of the rock?
  3. When does the rock hit the ocean?

  1. 3 seconds
  2. 256 feet
  3. 7 seconds

Got questions? Get instant answers now!

Questions & Answers

write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
Rockstar Reply
tanh`(x-iy) =A+iB, find A and B
Pankaj Reply
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
Branded Reply
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
archana Reply
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cos²A/cos²A=2cosec²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply
Practice Key Terms 7

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask