<< Chapter < Page Chapter >> Page >

For the following exercises, simplify the equation algebraically as much as possible. Then use a calculator to find the solutions on the interval [ 0 , 2 π ) . Round to four decimal places.

3 cot 2 x + cot x = 1

Got questions? Get instant answers now!

csc 2 x 3 csc x 4 = 0

0.2527 , 2.8889 , 4.7124

Got questions? Get instant answers now!

For the following exercises, graph each side of the equation to find the approximate solutions on the interval [ 0 , 2 π ) .

20 cos 2 x + 21 cos x + 1 = 0

Got questions? Get instant answers now!

sec 2 x 2 sec x = 15

1.3694 , 1.9106 , 4.3726 , 4.9137

Got questions? Get instant answers now!

Practice test

For the following exercises, simplify the given expression.

cos ( x ) sin x cot x + sin 2 x

1

Got questions? Get instant answers now!

sin ( x ) cos ( 2 x ) sin ( x ) cos ( 2 x )

Got questions? Get instant answers now!

c s c ( θ ) cot ( θ ) ( sec 2 θ 1 )

sec ( θ )

Got questions? Get instant answers now!

cos 2 ( θ ) sin 2 ( θ ) ( 1 + cot 2 ( θ ) ) ( 1 + tan 2 ( θ ) )

1

Got questions? Get instant answers now!

For the following exercises, find the exact value.

cos ( 7 π 12 )

2 6 4

Got questions? Get instant answers now!

tan ( sin 1 ( 2 2 ) + tan 1 3 )

2 3

Got questions? Get instant answers now!

2 sin ( π 4 ) sin ( π 6 )

Got questions? Get instant answers now!

cos ( 4 π 3 + θ )

1 2 cos ( θ ) 3 2 sin ( θ )

Got questions? Get instant answers now!

tan ( π 4 + θ )

1 + tan ( θ ) 1 + tan ( θ )

Got questions? Get instant answers now!

For the following exercises, simplify each expression. Do not evaluate.

cos 2 ( 32° ) tan 2 ( 32° )

1 cos ( 64 ) 2

Got questions? Get instant answers now!

cot ( θ 2 )

± 1 + cos ( θ ) 1 cos ( θ )

Got questions? Get instant answers now!

For the following exercises, find all exact solutions to the equation on [ 0 , 2 π ) .

cos 2 x sin 2 x 1 = 0

0 , π

Got questions? Get instant answers now!

cos 2 x = cos x 4 sin 2 x + 2 sin x 3 = 0

sin 1 ( 1 4 ( 13 1 ) ) , π sin 1 ( 1 4 ( 13 1 ) )

Got questions? Get instant answers now!

cos ( 2 x ) + sin 2 x = 0

Got questions? Get instant answers now!

2 sin 2 x sin x = 0

0 , π 6 , 5 π 6 , π

Got questions? Get instant answers now!

Rewrite the expression as a product instead of a sum: cos ( 2 x ) + cos ( 8 x ) .

Got questions? Get instant answers now!

For the following exercise, rewrite the product as a sum or difference.

8 cos ( 15 x ) sin ( 3 x )

4 [ sin ( 18 x ) sin ( 12 x ) ]

Got questions? Get instant answers now!

For the following exercise, rewrite the sum or difference as a product.

2 ( sin ( 8 θ ) sin ( 4 θ ) )

4 sin ( 2 θ ) cos ( 6 θ )

Got questions? Get instant answers now!

Find all solutions of tan ( x ) 3 = 0.

π 3 + k π

Got questions? Get instant answers now!

Find the solutions of sec 2 x 2 sec x = 15 on the interval [ 0 , 2 π ) algebraically; then graph both sides of the equation to determine the answer.

Got questions? Get instant answers now!

For the following exercises, find all solutions exactly on the interval 0 θ π

2 cos ( θ 2 ) = 1

120

Got questions? Get instant answers now!

Find sin ( 2 θ ) , cos ( 2 θ ) , and tan ( 2 θ ) given cot θ = 3 4 and θ is on the interval [ π 2 , π ] .

24 25 , 7 25 , 24 7

Got questions? Get instant answers now!

Find sin ( θ 2 ) , cos ( θ 2 ) , and tan ( θ 2 ) given cos θ = 7 25 and θ is in quadrant IV.

Got questions? Get instant answers now!

Rewrite the expression sin 4 x with no powers greater than 1.

1 8 ( 3 + cos ( 4 x ) 4 cos ( 2 x ) )

Got questions? Get instant answers now!

For the following exercises, prove the identity.

tan 3 x tan x sec 2 x = tan ( x )

Got questions? Get instant answers now!

sin ( 3 x ) cos x sin ( 2 x ) = cos 2 x sin x sin 3 x

sin ( 3 x ) cos x sin ( 2 x ) = sin ( x + 2 x ) cos x ( 2 sin x cos x ) = sin x cos ( 2 x ) + sin ( 2 x ) cos x 2 sin x cos 2 x = sin x ( cos 2 x sin 2 x ) + 2 sin x cos x cos x 2 sin x cos 2 x = sin x cos 2 x sin 3 + 0 = cos 2 x sin x sin 3 x = cos 2 x sin x sin 3 x

Got questions? Get instant answers now!

sin ( 2 x ) sin x cos ( 2 x ) cos x = sec x

Got questions? Get instant answers now!

Plot the points and find a function of the form y = A cos ( B x + C ) + D that fits the given data.

x 0 1 2 3 4 5
y −2 2 −2 2 −2 2

y = 2 cos ( π x + π )

Got questions? Get instant answers now!

The displacement h ( t ) in centimeters of a mass suspended by a spring is modeled by the function h ( t ) = 1 4 sin ( 120 π t ) , where t is measured in seconds. Find the amplitude, period, and frequency of this displacement.

Got questions? Get instant answers now!

A woman is standing 300 feet away from a 2000-foot building. If she looks to the top of the building, at what angle above horizontal is she looking? A bored worker looks down at her from the 15 th floor (1500 feet above her). At what angle is he looking down at her? Round to the nearest tenth of a degree.

81.5° , 78.7°

Got questions? Get instant answers now!

Two frequencies of sound are played on an instrument governed by the equation n ( t ) = 8 cos ( 20 π t ) cos ( 1000 π t ) . What are the period and frequency of the “fast” and “slow” oscillations? What is the amplitude?

Got questions? Get instant answers now!

The average monthly snowfall in a small village in the Himalayas is 6 inches, with the low of 1 inch occurring in July. Construct a function that models this behavior. During what period is there more than 10 inches of snowfall?

6 + 5 cos ( π 6 ( 1 x ) ) . From November 23 to February 6.

Got questions? Get instant answers now!

A spring attached to a ceiling is pulled down 20 cm. After 3 seconds, wherein it completes 6 full periods, the amplitude is only 15 cm. Find the function modeling the position of the spring t seconds after being released. At what time will the spring come to rest? In this case, use 1 cm amplitude as rest.

Got questions? Get instant answers now!

Water levels near a glacier currently average 9 feet, varying seasonally by 2 inches above and below the average and reaching their highest point in January. Due to global warming, the glacier has begun melting faster than normal. Every year, the water levels rise by a steady 3 inches. Find a function modeling the depth of the water t months from now. If the docks are 2 feet above current water levels, at what point will the water first rise above the docks?

D ( t ) = 2 cos ( π 6 t ) + 108 + 1 4 t , 93.5855 months (or 7.8 years) from now

Got questions? Get instant answers now!

Questions & Answers

what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what's cornea?
Majak Reply
what are cell
Achol
Explain the following terms . (1) Abiotic factors in an ecosystem
Nomai Reply
Abiotic factors are non living components of ecosystem.These include physical and chemical elements like temperature,light,water,soil,air quality and oxygen etc
Qasim
Define the term Abiotic
Marial
what is biology
daniel Reply
what is diffusion
Emmanuel Reply
passive process of transport of low-molecular weight material according to its concentration gradient
AI-Robot
what is production?
Catherine
hello
Marial
Pathogens and diseases
how did the oxygen help a human being
Achol Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask