<< Chapter < Page Chapter >> Page >
( x + 5 ) ( x 5 ) = x 2 25 ( x + 11 ) ( x 11 ) = x 2 121 ( 2 x + 3 ) ( 2 x 3 ) = 4 x 2 9

Because the sign changes in the second binomial, the outer and inner terms cancel each other out, and we are left only with the square of the first term minus the square of the last term.

Is there a special form for the sum of squares?

No. The difference of squares occurs because the opposite signs of the binomials cause the middle terms to disappear. There are no two binomials that multiply to equal a sum of squares.

Difference of squares

When a binomial is multiplied by a binomial with the same terms separated by the opposite sign, the result is the square of the first term minus the square of the last term.

( a + b ) ( a b ) = a 2 b 2

Given a binomial multiplied by a binomial with the same terms but the opposite sign, find the difference of squares.

  1. Square the first term of the binomials.
  2. Square the last term of the binomials.
  3. Subtract the square of the last term from the square of the first term.

Multiplying binomials resulting in a difference of squares

Multiply ( 9 x + 4 ) ( 9 x 4 ) .

Square the first term to get ( 9 x ) 2 = 81 x 2 . Square the last term to get 4 2 = 16. Subtract the square of the last term from the square of the first term to find the product of 81 x 2 16.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Multiply ( 2 x + 7 ) ( 2 x 7 ) .

4 x 2 −49

Got questions? Get instant answers now!

Performing operations with polynomials of several variables

We have looked at polynomials containing only one variable. However, a polynomial can contain several variables. All of the same rules apply when working with polynomials containing several variables. Consider an example:

( a + 2 b ) ( 4 a b c ) a ( 4 a b c ) + 2 b ( 4 a b c ) Use the distributive property . 4 a 2 a b a c + 8 a b 2 b 2 2 b c Multiply . 4 a 2 + ( a b + 8 a b ) a c 2 b 2 2 b c Combine like terms . 4 a 2 + 7 a b a c 2 b c 2 b 2 Simplify .

Multiplying polynomials containing several variables

Multiply ( x + 4 ) ( 3 x 2 y + 5 ) .

Follow the same steps that we used to multiply polynomials containing only one variable.

x ( 3 x 2 y + 5 ) + 4 ( 3 x 2 y + 5 )   Use the distributive property . 3 x 2 2 x y + 5 x + 12 x 8 y + 20 Multiply . 3 x 2 2 x y + ( 5 x + 12 x ) 8 y + 20 Combine like terms . 3 x 2 2 x y + 17 x 8 y + 20   Simplify .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Multiply ( 3 x 1 ) ( 2 x + 7 y 9 ) .

6 x 2 + 21 x y −29 x −7 y + 9

Got questions? Get instant answers now!

Access these online resources for additional instruction and practice with polynomials.

Key equations

perfect square trinomial ( x + a ) 2 = ( x + a ) ( x + a ) = x 2 + 2 a x + a 2
difference of squares ( a + b ) ( a b ) = a 2 b 2

Key concepts

  • A polynomial is a sum of terms each consisting of a variable raised to a non-negative integer power. The degree is the highest power of the variable that occurs in the polynomial. The leading term is the term containing the highest degree, and the leading coefficient is the coefficient of that term. See [link] .
  • We can add and subtract polynomials by combining like terms. See [link] and [link] .
  • To multiply polynomials, use the distributive property to multiply each term in the first polynomial by each term in the second. Then add the products. See [link] .
  • FOIL (First, Outer, Inner, Last) is a shortcut that can be used to multiply binomials. See [link] .
  • Perfect square trinomials and difference of squares are special products. See [link] and [link] .
  • Follow the same rules to work with polynomials containing several variables. See [link] .

Section exercises

Verbal

Evaluate the following statement: The degree of a polynomial in standard form is the exponent of the leading term. Explain why the statement is true or false.

The statement is true. In standard form, the polynomial with the highest value exponent is placed first and is the leading term. The degree of a polynomial is the value of the highest exponent, which in standard form is also the exponent of the leading term.

Got questions? Get instant answers now!

Many times, multiplying two binomials with two variables results in a trinomial. This is not the case when there is a difference of two squares. Explain why the product in this case is also a binomial.

Got questions? Get instant answers now!

You can multiply polynomials with any number of terms and any number of variables using four basic steps over and over until you reach the expanded polynomial. What are the four steps?

Use the distributive property, multiply, combine like terms, and simplify.

Got questions? Get instant answers now!

State whether the following statement is true and explain why or why not: A trinomial is always a higher degree than a monomial.

Got questions? Get instant answers now!

Algebraic

For the following exercises, identify the degree of the polynomial.

14 m 3 + m 2 16 m + 8

Got questions? Get instant answers now!

200 p 30 p 2 m + 40 m 3

Got questions? Get instant answers now!

6 y 4 y 5 + 3 y 4

Got questions? Get instant answers now!

For the following exercises, find the sum or difference.

( 12 x 2 + 3 x ) ( 8 x 2 −19 )

4 x 2 + 3 x + 19

Got questions? Get instant answers now!

( 4 z 3 + 8 z 2 z ) + ( −2 z 2 + z + 6 )

Got questions? Get instant answers now!

( 6 w 2 + 24 w + 24 ) ( 3 w 2 6 w + 3 )

3 w 2 + 30 w + 21

Got questions? Get instant answers now!

( 7 a 3 + 6 a 2 4 a 13 ) + ( 3 a 3 4 a 2 + 6 a + 17 )

Got questions? Get instant answers now!

( 11 b 4 6 b 3 + 18 b 2 4 b + 8 ) ( 3 b 3 + 6 b 2 + 3 b )

11 b 4 −9 b 3 + 12 b 2 −7 b + 8

Got questions? Get instant answers now!

( 49 p 2 25 ) + ( 16 p 4 32 p 2 + 16 )

Got questions? Get instant answers now!

For the following exercises, find the product.

( 4 x + 2 ) ( 6 x 4 )

24 x 2 −4 x −8

Got questions? Get instant answers now!

( 14 c 2 + 4 c ) ( 2 c 2 3 c )

Got questions? Get instant answers now!

( 6 b 2 6 ) ( 4 b 2 4 )

24 b 4 −48 b 2 + 24

Got questions? Get instant answers now!

( 3 d 5 ) ( 2 d + 9 )

Got questions? Get instant answers now!

( 9 v 11 ) ( 11 v 9 )

99 v 2 −202 v + 99

Got questions? Get instant answers now!

( 4 t 2 + 7 t ) ( −3 t 2 + 4 )

Got questions? Get instant answers now!

( 8 n 4 ) ( n 2 + 9 )

8 n 3 −4 n 2 + 72 n −36

Got questions? Get instant answers now!

For the following exercises, expand the binomial.

( 3 y 7 ) 2

9 y 2 −42 y + 49

Got questions? Get instant answers now!

( 4 p + 9 ) 2

16 p 2 + 72 p + 81

Got questions? Get instant answers now!

( 3 y 6 ) 2

9 y 2 −36 y + 36

Got questions? Get instant answers now!

For the following exercises, multiply the binomials.

( 4 c + 1 ) ( 4 c 1 )

16 c 2 −1

Got questions? Get instant answers now!

( 9 a 4 ) ( 9 a + 4 )

Got questions? Get instant answers now!

( 15 n 6 ) ( 15 n + 6 )

225 n 2 −36

Got questions? Get instant answers now!

( 25 b + 2 ) ( 25 b 2 )

Got questions? Get instant answers now!

( 4 + 4 m ) ( 4 4 m )

−16 m 2 + 16

Got questions? Get instant answers now!

( 14 p + 7 ) ( 14 p 7 )

Got questions? Get instant answers now!

( 11 q 10 ) ( 11 q + 10 )

121 q 2 −100

Got questions? Get instant answers now!

For the following exercises, multiply the polynomials.

( 2 x 2 + 2 x + 1 ) ( 4 x 1 )

Got questions? Get instant answers now!

( 4 t 2 + t 7 ) ( 4 t 2 1 )

16 t 4 + 4 t 3 −32 t 2 t + 7

Got questions? Get instant answers now!

( x 1 ) ( x 2 2 x + 1 )

Got questions? Get instant answers now!

( y 2 ) ( y 2 4 y 9 )

y 3 −6 y 2 y + 18

Got questions? Get instant answers now!

( 6 k 5 ) ( 6 k 2 + 5 k 1 )

Got questions? Get instant answers now!

( 3 p 2 + 2 p 10 ) ( p 1 )

3 p 3 p 2 −12 p + 10

Got questions? Get instant answers now!

( 4 m 13 ) ( 2 m 2 7 m + 9 )

Got questions? Get instant answers now!

( a + b ) ( a b )

a 2 b 2

Got questions? Get instant answers now!

( 4 x 6 y ) ( 6 x 4 y )

Got questions? Get instant answers now!

( 4 t 5 u ) 2

16 t 2 −40 t u + 25 u 2

Got questions? Get instant answers now!

( 9 m + 4 n 1 ) ( 2 m + 8 )

Got questions? Get instant answers now!

( 4 t x ) ( t x + 1 )

4 t 2 + x 2 + 4 t −5 t x x

Got questions? Get instant answers now!

( b 2 1 ) ( a 2 + 2 a b + b 2 )

Got questions? Get instant answers now!

( 4 r d ) ( 6 r + 7 d )

24 r 2 + 22 r d −7 d 2

Got questions? Get instant answers now!

( x + y ) ( x 2 x y + y 2 )

Got questions? Get instant answers now!

Real-world applications

A developer wants to purchase a plot of land to build a house. The area of the plot can be described by the following expression: ( 4 x + 1 ) ( 8 x 3 ) where x is measured in meters. Multiply the binomials to find the area of the plot in standard form.

32 x 2 −4 x −3 m 2

Got questions? Get instant answers now!

A prospective buyer wants to know how much grain a specific silo can hold. The area of the floor of the silo is ( 2 x + 9 ) 2 . The height of the silo is 10 x + 10 , where x is measured in feet. Expand the square and multiply by the height to find the expression that shows how much grain the silo can hold.

Got questions? Get instant answers now!

Extensions

For the following exercises, perform the given operations.

( 4 t 7 ) 2 ( 2 t + 1 ) ( 4 t 2 + 2 t + 11 )

32 t 3 100 t 2 + 40 t + 38

Got questions? Get instant answers now!

( 3 b + 6 ) ( 3 b 6 ) ( 9 b 2 36 )

Got questions? Get instant answers now!

( a 2 + 4 a c + 4 c 2 ) ( a 2 4 c 2 )

a 4 + 4 a 3 c −16 a c 3 −16 c 4

Got questions? Get instant answers now!

Questions & Answers

what is the function of sine with respect of cosine , graphically
Karl Reply
tangent bruh
Steve
cosx.cos2x.cos4x.cos8x
Aashish Reply
sinx sin2x is linearly dependent
cr Reply
what is a reciprocal
Ajibola Reply
The reciprocal of a number is 1 divided by a number. eg the reciprocal of 10 is 1/10 which is 0.1
Shemmy
 Reciprocal is a pair of numbers that, when multiplied together, equal to 1. Example; the reciprocal of 3 is ⅓, because 3 multiplied by ⅓ is equal to 1
Jeza
each term in a sequence below is five times the previous term what is the eighth term in the sequence
Funmilola Reply
I don't understand how radicals works pls
Kenny Reply
How look for the general solution of a trig function
collins Reply
stock therom F=(x2+y2) i-2xy J jaha x=a y=o y=b
Saurabh Reply
sinx sin2x is linearly dependent
cr
root under 3-root under 2 by 5 y square
Himanshu Reply
The sum of the first n terms of a certain series is 2^n-1, Show that , this series is Geometric and Find the formula of the n^th
amani Reply
cosA\1+sinA=secA-tanA
Aasik Reply
Wrong question
Saad
why two x + seven is equal to nineteen.
Kingsley Reply
The numbers cannot be combined with the x
Othman
2x + 7 =19
humberto
2x +7=19. 2x=19 - 7 2x=12 x=6
Yvonne
because x is 6
SAIDI
what is the best practice that will address the issue on this topic? anyone who can help me. i'm working on my action research.
Melanie Reply
simplify each radical by removing as many factors as possible (a) √75
Jason Reply
how is infinity bidder from undefined?
Karl Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask