<< Chapter < Page Chapter >> Page >
Translations of the Parent Function y = log b ( x )
Translation Form
Shift
  • Horizontally c units to the left
  • Vertically d units up
y = log b ( x + c ) + d
Stretch and Compress
  • Stretch if | a | > 1
  • Compression if | a | < 1
y = a log b ( x )
Reflect about the x -axis y = log b ( x )
Reflect about the y -axis y = log b ( x )
General equation for all translations y = a log b ( x + c ) + d

Translations of logarithmic functions

All translations of the parent logarithmic function, y = log b ( x ) , have the form

  f ( x ) = a log b ( x + c ) + d

where the parent function, y = log b ( x ) , b > 1 , is

  • shifted vertically up d units.
  • shifted horizontally to the left c units.
  • stretched vertically by a factor of | a | if | a | > 0.
  • compressed vertically by a factor of | a | if 0 < | a | < 1.
  • reflected about the x- axis when a < 0.

For f ( x ) = log ( x ) , the graph of the parent function is reflected about the y -axis.

Finding the vertical asymptote of a logarithm graph

What is the vertical asymptote of f ( x ) = −2 log 3 ( x + 4 ) + 5 ?

The vertical asymptote is at x = 4.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

What is the vertical asymptote of f ( x ) = 3 + ln ( x 1 ) ?

x = 1

Got questions? Get instant answers now!

Finding the equation from a graph

Find a possible equation for the common logarithmic function graphed in [link] .

Graph of a logarithmic function with a vertical asymptote at x=-2, has been vertically reflected, and passes through the points (-1, 1) and (2, -1).

This graph has a vertical asymptote at x = –2 and has been vertically reflected. We do not know yet the vertical shift or the vertical stretch. We know so far that the equation will have form:

f ( x ) = a log ( x + 2 ) + k

It appears the graph passes through the points ( –1 , 1 ) and ( 2 , –1 ) . Substituting ( –1 , 1 ) ,

1 = a log ( −1 + 2 ) + k Substitute  ( −1 , 1 ) . 1 = a log ( 1 ) + k Arithmetic . 1 = k log(1) = 0.

Next, substituting in ( 2 , –1 ) ,

1 = a log ( 2 + 2 ) + 1 Plug in  ( 2 , −1 ) . 2 = a log ( 4 ) Arithmetic .    a = 2 log ( 4 ) Solve for  a .

This gives us the equation f ( x ) = 2 log ( 4 ) log ( x + 2 ) + 1.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Give the equation of the natural logarithm graphed in [link] .

Graph of a logarithmic function with a vertical asymptote at x=-3, has been vertically stretched by 2, and passes through the points (-1, -1).

f ( x ) = 2 ln ( x + 3 ) 1

Got questions? Get instant answers now!

Is it possible to tell the domain and range and describe the end behavior of a function just by looking at the graph?

Yes, if we know the function is a general logarithmic function. For example, look at the graph in [link] . The graph approaches x = −3 (or thereabouts) more and more closely, so x = −3 is, or is very close to, the vertical asymptote. It approaches from the right, so the domain is all points to the right, { x | x > −3 } . The range, as with all general logarithmic functions, is all real numbers. And we can see the end behavior because the graph goes down as it goes left and up as it goes right. The end behavior is that as x 3 + , f ( x ) and as x , f ( x ) .

Access these online resources for additional instruction and practice with graphing logarithms.

Key equations

General Form for the Translation of the Parent Logarithmic Function   f ( x ) = log b ( x )   f ( x ) = a log b ( x + c ) + d

Key concepts

  • To find the domain of a logarithmic function, set up an inequality showing the argument greater than zero, and solve for x . See [link] and [link]
  • The graph of the parent function f ( x ) = log b ( x ) has an x- intercept at ( 1 , 0 ) , domain ( 0 , ) , range ( , ) , vertical asymptote x = 0 , and
    • if b > 1 , the function is increasing.
    • if 0 < b < 1 , the function is decreasing.
    See [link] .
  • The equation f ( x ) = log b ( x + c ) shifts the parent function y = log b ( x ) horizontally
    • left c units if c > 0.
    • right c units if c < 0.
    See [link] .
  • The equation f ( x ) = log b ( x ) + d shifts the parent function y = log b ( x ) vertically
    • up d units if d > 0.
    • down d units if d < 0.
    See [link] .
  • For any constant a > 0 , the equation f ( x ) = a log b ( x )
    • stretches the parent function y = log b ( x ) vertically by a factor of a if | a | > 1.
    • compresses the parent function y = log b ( x ) vertically by a factor of a if | a | < 1.
    See [link] and [link] .
  • When the parent function y = log b ( x ) is multiplied by 1 , the result is a reflection about the x -axis. When the input is multiplied by 1 , the result is a reflection about the y -axis.
    • The equation f ( x ) = log b ( x ) represents a reflection of the parent function about the x- axis.
    • The equation f ( x ) = log b ( x ) represents a reflection of the parent function about the y- axis.
    See [link] .
    • A graphing calculator may be used to approximate solutions to some logarithmic equations See [link] .
  • All translations of the logarithmic function can be summarized by the general equation   f ( x ) = a log b ( x + c ) + d . See [link] .
  • Given an equation with the general form   f ( x ) = a log b ( x + c ) + d , we can identify the vertical asymptote x = c for the transformation. See [link] .
  • Using the general equation f ( x ) = a log b ( x + c ) + d , we can write the equation of a logarithmic function given its graph. See [link] .

Questions & Answers

A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
Kaitlyn Reply
The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Eseka
Please prove it
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
Arleathia Reply
7.5 and 37.5
Nando
find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
Vedant
the 28th term is 175
Nando
192
Kenneth
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
SANDESH Reply
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask