<< Chapter < Page Chapter >> Page >

Appendix

Important proofs and derivations

Product Rule

log a x y = log a x + log a y

Proof:

Let m = log a x and n = log a y .

Write in exponent form.

x = a m and y = a n .

Multiply.

x y = a m a n = a m + n

a m + n = x y log a ( x y ) = m + n = log a x + log b y

Change of Base Rule

log a b = log c b log c a log a b = 1 log b a

where x and y are positive, and a > 0 , a 1.

Proof:

Let x = log a b .

Write in exponent form.

a x = b

Take the log c of both sides.

log c a x = log c b x log c a = log c b x = log c b log c a log a b = log c b log a b

When c = b ,

log a b = log b b log b a = 1 log b a

Heron’s Formula

A = s ( s a ) ( s b ) ( s c )

where s = a + b + c 2

Proof:

Let a , b , and c be the sides of a triangle, and h be the height.

A triangle with sides labeled: a, b and c.  A line runs through the center of the triangle, bisecting the top angle; this line is labeled: h.

So s = a + b + c 2 .

We can further name the parts of the base in each triangle established by the height such that p + q = c .

A triangle with sides labeled: a, b, and c.  A line runs through the center of the triangle bisecting the angle at the top; this line is labeled: h. The two new line segments on the base of the triangle are labeled: p and q.

Using the Pythagorean Theorem, h 2 + p 2 = a 2 and h 2 + q 2 = b 2 .

Since q = c p , then q 2 = ( c p ) 2 . Expanding, we find that q 2 = c 2 2 c p + p 2 .

We can then add h 2 to each side of the equation to get h 2 + q 2 = h 2 + c 2 2 c p + p 2 .

Substitute this result into the equation h 2 + q 2 = b 2 yields b 2 = h 2 + c 2 2 c p + p 2 .

Then replacing h 2 + p 2 with a 2 gives b 2 = a 2 2 c p + c 2 .

Solve for p to get

p = a 2 + b 2 c 2 2 c

Since h 2 = a 2 p 2 , we get an expression in terms of a , b , and c .

h 2 = a 2 p 2 = ( a + p ) ( a p ) = [ a + ( a 2 + c 2 b 2 ) 2 c ] [ a ( a 2 + c 2 b 2 ) 2 c ] = ( 2 a c + a 2 + c 2 b 2 ) ( 2 a c a 2 c 2 + b 2 ) 4 c 2 = ( ( a + c ) 2 b 2 ) ( b 2 ( a c ) 2 ) 4 c 2 = ( a + b + c ) ( a + c b ) ( b + a c ) ( b a + c ) 4 c 2 = ( a + b + c ) ( a + b + c ) ( a b + c ) ( a + b c ) 4 c 2 = 2 s ( 2 s a ) ( 2 s b ) ( 2 s c ) 4 c 2

Therefore,

h 2 = 4 s ( s a ) ( s b ) ( s c ) c 2 h = 2 s ( s a ) ( s b ) ( s c ) c

And since A = 1 2 c h , then

A = 1 2 c 2 s ( s a ) ( s b ) ( s c ) c = s ( s a ) ( s b ) ( s c )

Properties of the Dot Product

u · v = v · u

Proof:

u · v = u 1 , u 2 , ... u n · v 1 , v 2 , ... v n = u 1 v 1 + u 2 v 2 + ... + u n v n = v 1 u 1 + v 2 u 2 + ... + v n v n = v 1 , v 2 , ... v n · u 1 , u 2 , ... u n = v · u

u · ( v + w ) = u · v + u · w

Proof:

u · ( v + w ) = u 1 , u 2 , ... u n · ( v 1 , v 2 , ... v n + w 1 , w 2 , ... w n ) = u 1 , u 2 , ... u n · v 1 + w 1 , v 2 + w 2 , ... v n + w n = u 1 ( v 1 + w 1 ) , u 2 ( v 2 + w 2 ) , ... u n ( v n + w n ) = u 1 v 1 + u 1 w 1 , u 2 v 2 + u 2 w 2 , ... u n v n + u n w n = u 1 v 1 , u 2 v 2 , ... , u n v n + u 1 w 1 , u 2 w 2 , ... , u n w n = u 1 , u 2 , ... u n · v 1 , v 2 , ... v n + u 1 , u 2 , ... u n · w 1 , w 2 , ... w n = u · v + u · w

u · u = | u | 2

Proof:

u · u = u 1 , u 2 , ... u n · u 1 , u 2 , ... u n = u 1 u 1 + u 2 u 2 + ... + u n u n = u 1 2 + u 2 2 + ... + u n 2 = | u 1 , u 2 , ... u n | 2 = v · u

Standard Form of the Ellipse centered at the Origin

1 = x 2 a 2 + y 2 b 2

Derivation

An ellipse consists of all the points for which the sum of distances from two foci is constant:

( x ( c ) ) 2 + ( y 0 ) 2 + ( x c ) 2 + ( y 0 ) 2 = constant

An ellipse centered at the origin on an x, y-coordinate plane.  Points C1 and C2 are plotted at the points (0, b) and (0, -b) respectively; these points appear on the ellipse.  Points V1 and V2 are plotted at the points (-a, 0) and (a, 0) respectively; these points appear on the ellipse.  Points F1 and F2 are plotted at the points (-c, 0) and (c, 0) respectively; these points appear on the x-axis, but not the ellipse. The point (x, y) appears on the ellipse in the first quadrant.  Dotted lines extend from F1 and F2 to the point (x, y).

Consider a vertex.

An ellipse centered at the origin.  The points C1 and C2 are plotted at the points (0, b) and (0, -b) respectively; these points are on the ellipse.  The points V1 and V2 are plotted at the points (-a, 0) and (a, 0) respectively; these points are on the ellipse.  The points F1 and F2 are plotted at the points (-c, 0) and (c, 0) respectively; these points are on the x-axis and not on the ellipse.  A line extends from the point F1 to a point (x, y) which is at the point (a, 0).  A line extends from the point F2 to the point (x, y) as well.

Then, ( x ( c ) ) 2 + ( y 0 ) 2 + ( x c ) 2 + ( y 0 ) 2 = 2 a

Consider a covertex.

An ellipse centered at the origin.  The points C1 and C2 are plotted at the points (0, b) and (0, -b) respectively; these points are on the ellipse.  The points V1 and V2 are plotted at the points (-a, 0) and (a, 0) respectively; these points are on the ellipse.  The points F1 and F2 are plotted at the points (-c, 0) and (c, 0) respectively; these points are on the x-axis and not on the ellipse.  There is a point (x, y) which is plotted at (0, b). A line extends from the origin to the point (c, 0), this line is labeled: c.  A line extends from the origin to the point (x, y), this line is labeled: b.  A line extends from the point (c, 0) to the point (x, y); this line is labeled: (1/2)(2a)=a.  A dotted line extends from the point (-c, 0) to the point (x, y); this line is labeled: (1/2)(2a)=a.

Then b 2 + c 2 = a 2 .

( x ( c ) ) 2 + ( y 0 ) 2 + ( x c ) 2 + ( y 0 ) 2 = 2 a ( x + c ) 2 + y 2 = 2 a ( x c ) 2 + y 2 ( x + c ) 2 + y 2 = ( 2 a ( x c ) 2 + y 2 ) 2 x 2 + 2 c x + c 2 + y 2 = 4 a 2 4 a ( x c ) 2 + y 2 + ( x c ) 2 + y 2 x 2 + 2 c x + c 2 + y 2 = 4 a 2 4 a ( x c ) 2 + y 2 + x 2 2 c x + y 2 2 c x = 4 a 2 4 a ( x c ) 2 + y 2 2 c x 4 c x 4 a 2 = 4 a ( x c ) 2 + y 2 1 4 a ( 4 c x 4 a 2 ) = ( x c ) 2 + y 2 a c a x = ( x c ) 2 + y 2 a 2 2 x c + c 2 a 2 x 2 = ( x c ) 2 + y 2 a 2 2 x c + c 2 a 2 x 2 = x 2 2 x c + c 2 + y 2 a 2 + c 2 a 2 x 2 = x 2 + c 2 + y 2 a 2 + c 2 a 2 x 2 = x 2 + c 2 + y 2 a 2 c 2 = x 2 c 2 a 2 x 2 + y 2 a 2 c 2 = x 2 ( 1 c 2 a 2 ) + y 2

Let 1 = a 2 a 2 .

a 2 c 2 = x 2 ( a 2 c 2 a 2 ) + y 2 1 = x 2 a 2 + y 2 a 2 c 2

Because b 2 + c 2 = a 2 , then b 2 = a 2 c 2 .

1 = x 2 a 2 + y 2 a 2 c 2 1 = x 2 a 2 + y 2 b 2

Standard Form of the Hyperbola

1 = x 2 a 2 y 2 b 2

Derivation

A hyperbola is the set of all points in a plane such that the absolute value of the difference of the distances between two fixed points is constant.

Side-by-side graphs of hyperbole.  In Diagram 1: The foci F’ and F are labeled and can be found a little in front of the opening of the hyperbola.  A point P at (x,y) on the right curve is labeled.  A line extends from the F’ focus to the point P labeled: D1.  A line extends from the F focus to the point P labeled: D2.  In Diagram 2:  The foci F’ and F are labeled and can be found a little in front of the opening of the hyperbola.  A point V is labeled at the vertex of the right hyperbola.  A line extends from the F’ focus to the point V labeled: D1.  A line extends from the F focus to the point V labeled: D2.

Diagram 1: The difference of the distances from Point P to the foci is constant:

( x ( c ) ) 2 + ( y 0 ) 2 ( x c ) 2 + ( y 0 ) 2 = constant

Diagram 2: When the point is a vertex, the difference is 2 a .

( x ( c ) ) 2 + ( y 0 ) 2 ( x c ) 2 + ( y 0 ) 2 = 2 a

( x ( c ) ) 2 + ( y 0 ) 2 ( x c ) 2 + ( y 0 ) 2 = 2 a ( x + c ) 2 + y 2 ( x c ) 2 + y 2 = 2 a ( x + c ) 2 + y 2 = 2 a + ( x c ) 2 + y 2 ( x + c ) 2 + y 2 = ( 2 a + ( x c ) 2 + y 2 ) x 2 + 2 c x + c 2 + y 2 = 4 a 2 + 4 a ( x c ) 2 + y 2 x 2 + 2 c x + c 2 + y 2 = 4 a 2 + 4 a ( x c ) 2 + y 2 + x 2 2 c x + y 2 2 c x = 4 a 2 + 4 a ( x c ) 2 + y 2 2 c x 4 c x 4 a 2 = 4 a ( x c ) 2 + y 2 c x a 2 = a ( x c ) 2 + y 2 ( c x a 2 ) 2 = a 2 ( ( x c ) 2 + y 2 ) c 2 x 2 2 a 2 c 2 x 2 + a 4 = a 2 x 2 2 a 2 c 2 x 2 + a 2 c 2 + a 2 y 2 c 2 x 2 + a 4 = a 2 x 2 + a 2 c 2 + a 2 y 2 a 4 a 2 c 2 = a 2 x 2 c 2 x 2 + a 2 y 2 a 2 ( a 2 c 2 ) = ( a 2 c 2 ) x 2 + a 2 y 2 a 2 ( a 2 c 2 ) = ( c 2 a 2 ) x 2 a 2 y 2

Define b as a positive number such that b 2 = c 2 a 2 .

a 2 b 2 = b 2 x 2 a 2 y 2 a 2 b 2 a 2 b 2 = b 2 x 2 a 2 b 2 a 2 y 2 a 2 b 2 1 = x 2 a 2 y 2 b 2

Trigonometric identities

Pythagorean Identity cos 2 t + sin 2 t = 1 1 + tan 2 t = sec 2 t 1 + cot 2 t = csc 2 t
Even-Odd Identities cos ( t ) = c o s t sec ( t ) = sec t sin ( t ) = sin t tan ( t ) = tan t csc ( t ) = csc t cot ( t ) = cot t
Cofunction Identities cos t = sin ( π 2 t ) sin t = cos ( π 2 t ) tan t = cot ( π 2 t ) cot t = tan ( π 2 t ) sec t = csc ( π 2 t ) csc t = sec ( π 2 t )
Fundamental Identities tan t = sin t cos t sec t = 1 cos t csc t = 1 sin t c o t t = 1 tan t = cos t sin t
Sum and Difference Identities cos ( α + β ) = cos α cos β sin α sin β cos ( α β ) = cos α cos β + sin α sin β sin ( α + β ) = sin α cos β + cos α sin β sin ( α β ) = sin α cos β cos α sin β tan ( α + β ) = tan α + tan β 1 tan α tan β tan ( α β ) = tan α tan β 1 + tan α tan β
Double-Angle Formulas sin ( 2 θ ) = 2 sin θ cos θ cos ( 2 θ ) = cos 2 θ sin 2 θ cos ( 2 θ ) = 1 2 sin 2 θ cos ( 2 θ ) = 2 cos 2 θ 1 tan ( 2 θ ) = 2 tan θ 1 tan 2 θ
Half-Angle Formulas sin α 2 = ± 1 cos α 2 cos α 2 = ± 1 + cos α 2 tan α 2 = ± 1 cos α 1 + cos α tan α 2 = sin α 1 + cos α tan α 2 = 1 cos α sin α
Reduction Formulas sin 2 θ = 1 cos ( 2 θ ) 2 cos 2 θ = 1 + cos ( 2 θ ) 2 tan 2 θ = 1 cos ( 2 θ ) 1 + cos ( 2 θ )
Product-to-Sum Formulas cos α cos β = 1 2 [ cos ( α β ) + cos ( α + β ) ] sin α cos β = 1 2 [ sin ( α + β ) + sin ( α β ) ] sin α sin β = 1 2 [ cos ( α β ) cos ( α + β ) ] cos α sin β = 1 2 [ sin ( α + β ) sin ( α β ) ]
Sum-to-Product Formulas sin α + sin β = 2 sin ( α + β 2 ) cos ( α β 2 ) sin α sin β = 2 sin ( α β 2 ) cos ( α + β 2 ) cos α cos β = 2 sin ( α + β 2 ) sin ( α β 2 ) cos α + cos β = 2 cos ( α + β 2 ) cos ( α β 2 )
Law of Sines sin α a = sin β b = sin γ c a sin α = b sin β = c sin γ
Law of Cosines a 2 = b 2 + c 2 2 b c cos α b 2 = a 2 + c 2 2 a c cos β c 2 = a 2 + b 2 2 a b cos γ

Toolkit functions

Three graphs side-by-side. From left to right, graph of the identify function, square function, and square root function. All three graphs extend from -4 to 4 on each axis.
Three graphs side-by-side. From left to right, graph of the cubic function, cube root function, and reciprocal function. All three graphs extend from -4 to 4 on each axis.
Three graphs side-by-side. From left to right, graph of the absolute value function, exponential function, and natural logarithm function. All three graphs extend from -4 to 4 on each axis.

Trigonometric functions

Unit Circle

Graph of unit circle with angles in degrees, angles in radians, and points along the circle inscribed.
Angle 0 π 6 , or 30 ° π 4 , or 45 ° π 3 , or 60 ° π 2 , or 90 °
Cosine 1 3 2 2 2 1 2 0
Sine 0 1 2 2 2 3 2 1
Tangent 0 3 3 1 3 Undefined
Secant 1 2 3 3 2 2 Undefined
Cosecant Undefined 2 2 2 3 3 1
Cotangent Undefined 3 1 3 3 0

Questions & Answers

how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
what is isotopes
Nangun Reply
nuclei having the same Z and different N s
AI-Robot
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask