# 1.4 Polynomials

 Page 1 / 15
In this section students will:
• Identify the degree and leading coefficient of polynomials.
• Multiply polynomials.
• Use FOIL to multiply binomials.
• Perform operations with polynomials of several variables.

Earl is building a doghouse, whose front is in the shape of a square topped with a triangle. There will be a rectangular door through which the dog can enter and exit the house. Earl wants to find the area of the front of the doghouse so that he can purchase the correct amount of paint. Using the measurements of the front of the house, shown in [link] , we can create an expression that combines several variable terms, allowing us to solve this problem and others like it.

First find the area of the square in square feet.

$\begin{array}{ccc}\hfill A& =& {s}^{2}\hfill \\ & =& {\left(2x\right)}^{2}\hfill \\ & =& 4{x}^{2}\hfill \end{array}$

Then find the area of the triangle in square feet.

Next find the area of the rectangular door in square feet.

$\begin{array}{ccc}\hfill A& =& lw\hfill \\ & =& x\cdot 1\hfill \\ \hfill & =& x\hfill \end{array}$

The area of the front of the doghouse can be found by adding the areas of the square and the triangle, and then subtracting the area of the rectangle. When we do this, we get $\text{\hspace{0.17em}}4{x}^{2}+\frac{3}{2}x-x\text{\hspace{0.17em}}{\text{ft}}^{2},$ or $\text{\hspace{0.17em}}4{x}^{2}+\frac{1}{2}x\text{\hspace{0.17em}}$ ft 2 .

In this section, we will examine expressions such as this one, which combine several variable terms.

## Identifying the degree and leading coefficient of polynomials

The formula just found is an example of a polynomial    , which is a sum of or difference of terms, each consisting of a variable raised to a nonnegative integer power. A number multiplied by a variable raised to an exponent, such as $\text{\hspace{0.17em}}384\pi ,$ is known as a coefficient    . Coefficients can be positive, negative, or zero, and can be whole numbers, decimals, or fractions. Each product $\text{\hspace{0.17em}}{a}_{i}{x}^{i},$ such as $\text{\hspace{0.17em}}384\pi w,$ is a term of a polynomial    . If a term does not contain a variable, it is called a constant .

A polynomial containing only one term, such as $\text{\hspace{0.17em}}5{x}^{4},$ is called a monomial    . A polynomial containing two terms, such as $\text{\hspace{0.17em}}2x-9,$ is called a binomial    . A polynomial containing three terms, such as $\text{\hspace{0.17em}}-3{x}^{2}+8x-7,$ is called a trinomial    .

We can find the degree    of a polynomial by identifying the highest power of the variable that occurs in the polynomial. The term with the highest degree is called the leading term    because it is usually written first. The coefficient of the leading term is called the leading coefficient    . When a polynomial is written so that the powers are descending, we say that it is in standard form.

## Polynomials

A polynomial    is an expression that can be written in the form

${a}_{n}{x}^{n}+...+{a}_{2}{x}^{2}+{a}_{1}x+{a}_{0}$

Each real number a i is called a coefficient    . The number $\text{\hspace{0.17em}}{a}_{0}\text{\hspace{0.17em}}$ that is not multiplied by a variable is called a constant . Each product $\text{\hspace{0.17em}}{a}_{i}{x}^{i}\text{\hspace{0.17em}}$ is a term of a polynomial    . The highest power of the variable that occurs in the polynomial is called the degree    of a polynomial. The leading term    is the term with the highest power, and its coefficient is called the leading coefficient    .

Given a polynomial expression, identify the degree and leading coefficient .

1. Find the highest power of x to determine the degree.
2. Identify the term containing the highest power of x to find the leading term.
3. Identify the coefficient of the leading term.

A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
The sequence is {1,-1,1-1.....} has
how can we solve this problem
Sin(A+B) = sinBcosA+cosBsinA
Prove it
Eseka
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
7.5 and 37.5
Nando
find the sum of 28th term of the AP 3+10+17+---------
I think you should say "28 terms" instead of "28th term"
Vedant
the 28th term is 175
Nando
192
Kenneth
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
write down the polynomial function with root 1/3,2,-3 with solution
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
what is the answer to dividing negative index
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
give me the waec 2019 questions