<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Graph functions using vertical and horizontal shifts.
  • Graph functions using reflections about the x -axis axis and the y -axis .
  • Determine whether a function is even, odd, or neither from its graph.
  • Graph functions using compressions and stretches.
  • Combine transformations.
Figure_01_05_038
(credit: "Misko"/Flickr)

We all know that a flat mirror enables us to see an accurate image of ourselves and whatever is behind us. When we tilt the mirror, the images we see may shift horizontally or vertically. But what happens when we bend a flexible mirror? Like a carnival funhouse mirror, it presents us with a distorted image of ourselves, stretched or compressed horizontally or vertically. In a similar way, we can distort or transform mathematical functions to better adapt them to describing objects or processes in the real world. In this section, we will take a look at several kinds of transformations.

Graphing functions using vertical and horizontal shifts

Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs, and equations. One method we can employ is to adapt the basic graphs of the toolkit functions to build new models for a given scenario. There are systematic ways to alter functions to construct appropriate models for the problems we are trying to solve.

Identifying vertical shifts

One simple kind of transformation involves shifting the entire graph of a function up, down, right, or left. The simplest shift is a vertical shift , moving the graph up or down, because this transformation involves adding a positive or negative constant to the function. In other words, we add the same constant to the output value of the function regardless of the input. For a function g ( x ) = f ( x ) + k , the function f ( x ) is shifted vertically k units. See [link] for an example.

Figure_01_05_001
Vertical shift by k = 1 of the cube root function f ( x ) = x 3 .

To help you visualize the concept of a vertical shift, consider that y = f ( x ) . Therefore, f ( x ) + k is equivalent to y + k . Every unit of y is replaced by y + k , so the y -value increases or decreases depending on the value of k . The result is a shift upward or downward.

Vertical shift

Given a function f ( x ) , a new function g ( x ) = f ( x ) + k , where k is a constant, is a vertical shift    of the function f ( x ) . All the output values change by k units. If k is positive, the graph will shift up. If k is negative, the graph will shift down.

Adding a constant to a function

To regulate temperature in a green building, airflow vents near the roof open and close throughout the day. [link] shows the area of open vents V (in square feet) throughout the day in hours after midnight, t . During the summer, the facilities manager decides to try to better regulate temperature by increasing the amount of open vents by 20 square feet throughout the day and night. Sketch a graph of this new function.

Figure_01_05_002

We can sketch a graph of this new function by adding 20 to each of the output values of the original function. This will have the effect of shifting the graph vertically up, as shown in [link] .

Figure_01_05_003a

Notice that in [link] , for each input value, the output value has increased by 20, so if we call the new function S ( t ) , we could write

S ( t ) = V ( t ) + 20

This notation tells us that, for any value of t , S ( t ) can be found by evaluating the function V at the same input and then adding 20 to the result. This defines S as a transformation of the function V , in this case a vertical shift up 20 units. Notice that, with a vertical shift, the input values stay the same and only the output values change. See [link] .

t 0 8 10 17 19 24
V ( t ) 0 0 220 220 0 0
S ( t ) 20 20 240 240 20 20
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Eseka
Please prove it
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
Arleathia Reply
7.5 and 37.5
Nando
find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
Vedant
the 28th term is 175
Nando
192
Kenneth
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
SANDESH Reply
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask