<< Chapter < Page Chapter >> Page >

Given a logarithmic function with the form f ( x ) = log b ( x ) , graph the function.

  1. Draw and label the vertical asymptote, x = 0.
  2. Plot the x- intercept, ( 1 , 0 ) .
  3. Plot the key point ( b , 1 ) .
  4. Draw a smooth curve through the points.
  5. State the domain, ( 0 , ) , the range, ( , ) , and the vertical asymptote, x = 0.

Graphing a logarithmic function with the form f ( x ) = log b ( x ).

Graph f ( x ) = log 5 ( x ) . State the domain, range, and asymptote.

Before graphing, identify the behavior and key points for the graph.

  • Since b = 5 is greater than one, we know the function is increasing. The left tail of the graph will approach the vertical asymptote x = 0 , and the right tail will increase slowly without bound.
  • The x -intercept is ( 1 , 0 ) .
  • The key point ( 5 , 1 ) is on the graph.
  • We draw and label the asymptote, plot and label the points, and draw a smooth curve through the points (see [link] ).
Graph of f(x)=log_5(x) with labeled points at (1, 0) and (5, 1). The y-axis is the asymptote.

The domain is ( 0 , ) , the range is ( , ) , and the vertical asymptote is x = 0.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Graph f ( x ) = log 1 5 ( x ) . State the domain, range, and asymptote.

Graph of f(x)=log_(1/5)(x) with labeled points at (1/5, 1) and (1, 0). The y-axis is the asymptote.

The domain is ( 0 , ) , the range is ( , ) , and the vertical asymptote is x = 0.

Got questions? Get instant answers now!

Graphing transformations of logarithmic functions

As we mentioned in the beginning of the section, transformations of logarithmic graphs behave similarly to those of other parent functions. We can shift, stretch, compress, and reflect the parent function y = log b ( x ) without loss of shape.

Graphing a horizontal shift of f ( x ) = log b ( x )

When a constant c is added to the input of the parent function f ( x ) = l o g b ( x ) , the result is a horizontal shift     c units in the opposite direction of the sign on c . To visualize horizontal shifts, we can observe the general graph of the parent function f ( x ) = log b ( x ) and for c > 0 alongside the shift left, g ( x ) = log b ( x + c ) , and the shift right, h ( x ) = log b ( x c ) . See [link] .

Graph of two functions. The parent function is f(x)=log_b(x), with an asymptote at x=0  and g(x)=log_b(x+c) is the translation function with an asymptote at x=-c. This shows the translation of shifting left.

Horizontal shifts of the parent function y = log b ( x )

For any constant c , the function f ( x ) = log b ( x + c )

  • shifts the parent function y = log b ( x ) left c units if c > 0.
  • shifts the parent function y = log b ( x ) right c units if c < 0.
  • has the vertical asymptote x = c .
  • has domain ( c , ) .
  • has range ( , ) .

Given a logarithmic function with the form f ( x ) = log b ( x + c ) , graph the translation.

  1. Identify the horizontal shift:
    1. If c > 0 , shift the graph of f ( x ) = log b ( x ) left c units.
    2. If c < 0 , shift the graph of f ( x ) = log b ( x ) right c units.
  2. Draw the vertical asymptote x = c .
  3. Identify three key points from the parent function. Find new coordinates for the shifted functions by subtracting c from the x coordinate.
  4. Label the three points.
  5. The Domain is ( c , ) , the range is ( , ) , and the vertical asymptote is x = c .

Graphing a horizontal shift of the parent function y = log b ( x )

Sketch the horizontal shift f ( x ) = log 3 ( x 2 ) alongside its parent function. Include the key points and asymptotes on the graph. State the domain, range, and asymptote.

Since the function is f ( x ) = log 3 ( x 2 ) , we notice x + ( 2 ) = x 2.

Thus c = 2 , so c < 0. This means we will shift the function f ( x ) = log 3 ( x ) right 2 units.

The vertical asymptote is x = ( 2 ) or x = 2.

Consider the three key points from the parent function, ( 1 3 , −1 ) , ( 1 , 0 ) , and ( 3 , 1 ) .

The new coordinates are found by adding 2 to the x coordinates.

Label the points ( 7 3 , −1 ) , ( 3 , 0 ) , and ( 5 , 1 ) .

The domain is ( 2 , ) , the range is ( , ) , and the vertical asymptote is x = 2.

Graph of two functions. The parent function is y=log_3(x), with an asymptote at x=0 and labeled points at (1/3, -1), (1, 0), and (3, 1).The translation function f(x)=log_3(x-2) has an asymptote at x=2 and labeled points at (3, 0) and (5, 1).
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
what is isotopes
Nangun Reply
nuclei having the same Z and different N s
AI-Robot
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask