# 3.4 Composition of functions  (Page 8/9)

 Page 8 / 9

$h\left(x\right)={\left(\frac{8+{x}^{3}}{8-{x}^{3}}\right)}^{4}$

$h\left(x\right)=\sqrt{2x+6}$

sample: $\begin{array}{l}\text{\hspace{0.17em}}f\left(x\right)=\sqrt{x}\text{\hspace{0.17em}}\\ \text{\hspace{0.17em}}g\left(x\right)=2x+6\end{array}$

$h\left(x\right)={\left(5x-1\right)}^{3}$

$h\left(x\right)=\sqrt[3]{x-1}$

sample: $\begin{array}{l}\text{\hspace{0.17em}}f\left(x\right)=\sqrt[3]{x}\\ \text{\hspace{0.17em}}g\left(x\right)=\left(x-1\right)\end{array}$

$h\left(x\right)=|{x}^{2}+7|$

$h\left(x\right)=\frac{1}{{\left(x-2\right)}^{3}}$

sample: $\begin{array}{l}\text{\hspace{0.17em}}f\left(x\right)={x}^{3}\\ \text{\hspace{0.17em}}g\left(x\right)=\frac{1}{x-2}\end{array}$

$h\left(x\right)={\left(\frac{1}{2x-3}\right)}^{2}$

$h\left(x\right)=\sqrt{\frac{2x-1}{3x+4}}$

sample: $\begin{array}{l}\text{\hspace{0.17em}}f\left(x\right)=\sqrt{x}\\ \text{\hspace{0.17em}}g\left(x\right)=\frac{2x-1}{3x+4}\end{array}$

## Graphical

For the following exercises, use the graphs of $\text{\hspace{0.17em}}f,$ shown in [link] , and $\text{\hspace{0.17em}}g,$ shown in [link] , to evaluate the expressions.

$f\left(g\left(3\right)\right)$

$f\left(g\left(1\right)\right)$

2

$g\left(f\left(1\right)\right)$

$g\left(f\left(0\right)\right)$

5

$f\left(f\left(5\right)\right)$

$f\left(f\left(4\right)\right)$

4

$g\left(g\left(2\right)\right)$

$g\left(g\left(0\right)\right)$

0

For the following exercises, use graphs of $\text{\hspace{0.17em}}f\left(x\right),$ shown in [link] , $\text{\hspace{0.17em}}g\left(x\right),$ shown in [link] , and $\text{\hspace{0.17em}}h\left(x\right),$ shown in [link] , to evaluate the expressions.

$g\left(f\left(1\right)\right)$

$g\left(f\left(2\right)\right)$

2

$f\left(g\left(4\right)\right)$

$f\left(g\left(1\right)\right)$

1

$f\left(h\left(2\right)\right)$

$h\left(f\left(2\right)\right)$

4

$f\left(g\left(h\left(4\right)\right)\right)$

$f\left(g\left(f\left(-2\right)\right)\right)$

4

## Numeric

For the following exercises, use the function values for shown in [link] to evaluate each expression.

$x$ $f\left(x\right)$ $g\left(x\right)$
0 7 9
1 6 5
2 5 6
3 8 2
4 4 1
5 0 8
6 2 7
7 1 3
8 9 4
9 3 0

$f\left(g\left(8\right)\right)$

$f\left(g\left(5\right)\right)$

9

$g\left(f\left(5\right)\right)$

$g\left(f\left(3\right)\right)$

4

$f\left(f\left(4\right)\right)$

$f\left(f\left(1\right)\right)$

2

$g\left(g\left(2\right)\right)$

$g\left(g\left(6\right)\right)$

3

For the following exercises, use the function values for shown in [link] to evaluate the expressions.

 $x$ $f\left(x\right)$ $g\left(x\right)$ $-3$ 11 $-8$ $-2$ 9 $-3$ $-1$ 7 0 0 5 1 1 3 0 2 1 $-3$ 3 $-1$ $-8$

$\left(f\circ g\right)\left(1\right)$

$\left(f\circ g\right)\left(2\right)$

11

$\left(g\circ f\right)\left(2\right)$

$\left(g\circ f\right)\left(3\right)$

0

$\left(g\circ g\right)\left(1\right)$

$\left(f\circ f\right)\left(3\right)$

7

For the following exercises, use each pair of functions to find $\text{\hspace{0.17em}}f\left(g\left(0\right)\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(f\left(0\right)\right).$

$f\left(x\right)=4x+8,\text{\hspace{0.17em}}g\left(x\right)=7-{x}^{2}$

$f\left(x\right)=5x+7,\text{\hspace{0.17em}}g\left(x\right)=4-2{x}^{2}$

$f\left(g\left(0\right)\right)=27,\text{\hspace{0.17em}}g\left(f\left(0\right)\right)=-94$

$f\left(x\right)=\sqrt{x+4},\text{\hspace{0.17em}}g\left(x\right)=12-{x}^{3}$

$f\left(x\right)=\frac{1}{x+2},\text{\hspace{0.17em}}g\left(x\right)=4x+3$

$f\left(g\left(0\right)\right)=\frac{1}{5},\text{\hspace{0.17em}}g\left(f\left(0\right)\right)=5$

For the following exercises, use the functions $\text{\hspace{0.17em}}f\left(x\right)=2{x}^{2}+1\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(x\right)=3x+5\text{\hspace{0.17em}}$ to evaluate or find the composite function as indicated.

$f\left(g\left(2\right)\right)$

$f\left(g\left(x\right)\right)$

$18{x}^{2}+60x+51$

$g\left(f\left(-3\right)\right)$

$\left(g\circ g\right)\left(x\right)$

$g\circ g\left(x\right)=9x+20$

## Extensions

For the following exercises, use $\text{\hspace{0.17em}}f\left(x\right)={x}^{3}+1\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(x\right)=\sqrt[3]{x-1}.$

Find $\text{\hspace{0.17em}}\left(f\circ g\right)\left(x\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(g\circ f\right)\left(x\right).\text{\hspace{0.17em}}$ Compare the two answers.

Find $\text{\hspace{0.17em}}\left(f\circ g\right)\left(2\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(g\circ f\right)\left(2\right).$

2

What is the domain of $\text{\hspace{0.17em}}\left(g\circ f\right)\left(x\right)?$

What is the domain of $\text{\hspace{0.17em}}\left(f\circ g\right)\left(x\right)?$

$\left(-\infty ,\infty \right)$

Let $\text{\hspace{0.17em}}f\left(x\right)=\frac{1}{x}.$

1. Find $\text{\hspace{0.17em}}\left(f\circ f\right)\left(x\right).$
2. Is $\text{\hspace{0.17em}}\left(f\circ f\right)\left(x\right)\text{\hspace{0.17em}}$ for any function $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ the same result as the answer to part (a) for any function? Explain.

For the following exercises, let $\text{\hspace{0.17em}}F\left(x\right)={\left(x+1\right)}^{5},\text{\hspace{0.17em}}$ $f\left(x\right)={x}^{5},\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(x\right)=x+1.$

True or False: $\text{\hspace{0.17em}}\left(g\circ f\right)\left(x\right)=F\left(x\right).$

False

True or False: $\text{\hspace{0.17em}}\left(f\circ g\right)\left(x\right)=F\left(x\right).$

For the following exercises, find the composition when $\text{\hspace{0.17em}}f\left(x\right)={x}^{2}+2\text{\hspace{0.17em}}$ for all $\text{\hspace{0.17em}}x\ge 0\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(x\right)=\sqrt{x-2}.$

$\left(f\circ g\right)\left(6\right);\text{\hspace{0.17em}}\left(g\circ f\right)\left(6\right)$

$\left(f\circ g\right)\left(6\right)=6$ ; $\text{\hspace{0.17em}}\left(g\circ f\right)\left(6\right)=6$

$\left(g\circ f\right)\left(a\right);\text{\hspace{0.17em}}\left(f\circ g\right)\left(a\right)$

$\left(f\circ g\right)\left(11\right);\text{\hspace{0.17em}}\left(g\circ f\right)\left(11\right)$

$\left(f\circ g\right)\left(11\right)=11\text{\hspace{0.17em}},\text{\hspace{0.17em}}\left(g\circ f\right)\left(11\right)=11$

## Real-world applications

The function $\text{\hspace{0.17em}}D\left(p\right)\text{\hspace{0.17em}}$ gives the number of items that will be demanded when the price is $\text{\hspace{0.17em}}p.\text{\hspace{0.17em}}$ The production cost $\text{\hspace{0.17em}}C\left(x\right)\text{\hspace{0.17em}}$ is the cost of producing $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ items. To determine the cost of production when the price is \$6, you would do which of the following?

1. Evaluate $\text{\hspace{0.17em}}D\left(C\left(6\right)\right).$
2. Evaluate $\text{\hspace{0.17em}}C\left(D\left(6\right)\right).$
3. Solve $\text{\hspace{0.17em}}D\left(C\left(x\right)\right)=6.$
4. Solve $\text{\hspace{0.17em}}C\left(D\left(p\right)\right)=6.$

The function $\text{\hspace{0.17em}}A\left(d\right)\text{\hspace{0.17em}}$ gives the pain level on a scale of 0 to 10 experienced by a patient with $\text{\hspace{0.17em}}d\text{\hspace{0.17em}}$ milligrams of a pain-reducing drug in her system. The milligrams of the drug in the patient’s system after $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ minutes is modeled by $\text{\hspace{0.17em}}m\left(t\right).\text{\hspace{0.17em}}$ Which of the following would you do in order to determine when the patient will be at a pain level of 4?

1. Evaluate $\text{\hspace{0.17em}}A\left(m\left(4\right)\right).$
2. Evaluate $\text{\hspace{0.17em}}m\left(A\left(4\right)\right).$
3. Solve $\text{\hspace{0.17em}}A\left(m\left(t\right)\right)=4.$
4. Solve $\text{\hspace{0.17em}}m\left(A\left(d\right)\right)=4.$

c

A store offers customers a 30% discount on the price $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ of selected items. Then, the store takes off an additional 15% at the cash register. Write a price function $\text{\hspace{0.17em}}P\left(x\right)\text{\hspace{0.17em}}$ that computes the final price of the item in terms of the original price $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ (Hint: Use function composition to find your answer.)

A rain drop hitting a lake makes a circular ripple. If the radius, in inches, grows as a function of time in minutes according to $\text{\hspace{0.17em}}r\left(t\right)=25\sqrt{t+2},\text{\hspace{0.17em}}$ find the area of the ripple as a function of time. Find the area of the ripple at $\text{\hspace{0.17em}}t=2.$

$A\left(t\right)=\pi {\left(25\sqrt{t+2}\right)}^{2}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}A\left(2\right)=\pi {\left(25\sqrt{4}\right)}^{2}=2500\pi$ square inches

A forest fire leaves behind an area of grass burned in an expanding circular pattern. If the radius of the circle of burning grass is increasing with time according to the formula $\text{\hspace{0.17em}}r\left(t\right)=2t+1,\text{\hspace{0.17em}}$ express the area burned as a function of time, $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ (minutes).

Use the function you found in the previous exercise to find the total area burned after 5 minutes.

$A\left(5\right)=\pi {\left(2\left(5\right)+1\right)}^{2}=121\pi \text{\hspace{0.17em}}$ square units

The radius $\text{\hspace{0.17em}}r,\text{\hspace{0.17em}}$ in inches, of a spherical balloon is related to the volume, $\text{\hspace{0.17em}}V,\text{\hspace{0.17em}}$ by $\text{\hspace{0.17em}}r\left(V\right)=\sqrt[3]{\frac{3V}{4\pi }}.\text{\hspace{0.17em}}$ Air is pumped into the balloon, so the volume after $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ seconds is given by $\text{\hspace{0.17em}}V\left(t\right)=10+20t.$

1. Find the composite function $\text{\hspace{0.17em}}r\left(V\left(t\right)\right).$
2. Find the exact time when the radius reaches 10 inches.

The number of bacteria in a refrigerated food product is given by $N\left(T\right)=23{T}^{2}-56T+1,\text{\hspace{0.17em}}$ $3 where $\text{\hspace{0.17em}}T$ is the temperature of the food. When the food is removed from the refrigerator, the temperature is given by $T\left(t\right)=5t+1.5,$ where $t$ is the time in hours.

1. Find the composite function $\text{\hspace{0.17em}}N\left(T\left(t\right)\right).$
2. Find the time (round to two decimal places) when the bacteria count reaches 6752.

a. $\text{\hspace{0.17em}}N\left(T\left(t\right)\right)=23{\left(5t+1.5\right)}^{2}-56\left(5t+1.5\right)+1;\text{\hspace{0.17em}}$ b. 3.38 hours

what is the answer to dividing negative index
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
give me the waec 2019 questions
the polar co-ordinate of the point (-1, -1)
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
tanh`(x-iy) =A+iB, find A and B
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
1+cos²A/cos²A=2cosec²A-1
test for convergence the series 1+x/2+2!/9x3
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
Ajith
exponential series
Naveen
yeah
Morosi
prime number?
Morosi
what is subgroup
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1