# 1.1 Real numbers: algebra essentials  (Page 8/35)

 Page 8 / 35

List the constants and variables for each algebraic expression.

1. $2\pi r\left(r+h\right)$
2. 2( L + W )
3. $4{y}^{3}+y$
Constants Variables
a. $2\pi r\left(r+h\right)$ $2,\pi$ $r,h$
b. 2(L + W) 2 L, W
c. $\text{\hspace{0.17em}}4{y}^{3}+y$ 4 $y$

## Evaluating an algebraic expression at different values

Evaluate the expression $\text{\hspace{0.17em}}2x-7\text{\hspace{0.17em}}$ for each value for x.

1. $\text{\hspace{0.17em}}x=0$
2. $\text{\hspace{0.17em}}x=1$
3. $\text{\hspace{0.17em}}x=\frac{1}{2}$
4. $\text{\hspace{0.17em}}x=-4$
1. Substitute 0 for $\text{\hspace{0.17em}}x.$
$\begin{array}{ccc}\hfill 2x-7& =& 2\left(0\right)-7\\ & =& 0-7\hfill \\ & =& -7\hfill \end{array}$
2. Substitute 1 for $\text{\hspace{0.17em}}x.$
$\begin{array}{ccc}2x-7& =& 2\left(1\right)-7\hfill \\ & =& 2-7\hfill \\ & =& -5\hfill \end{array}$
3. Substitute $\text{\hspace{0.17em}}\frac{1}{2}\text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}x.$
$\begin{array}{ccc}\hfill 2x-7& =& 2\left(\frac{1}{2}\right)-7\hfill \\ & =& 1-7\hfill \\ & =& -6\hfill \end{array}$
4. Substitute $\text{\hspace{0.17em}}-4\text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}x.$
$\begin{array}{ccc}\hfill 2x-7& =& 2\left(-4\right)-7\\ & =& -8-7\hfill \\ & =& -15\hfill \end{array}$

Evaluate the expression $\text{\hspace{0.17em}}11-3y\text{\hspace{0.17em}}$ for each value for y.

1. $\text{\hspace{0.17em}}y=2$
2. $\text{\hspace{0.17em}}y=0$
3. $\text{\hspace{0.17em}}y=\frac{2}{3}$
4. $\text{\hspace{0.17em}}y=-5$
1. 5;
2. 11;
3. 9;
4. 26

## Evaluating algebraic expressions

Evaluate each expression for the given values.

1. $\text{\hspace{0.17em}}x+5\text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}x=-5$
2. $\text{\hspace{0.17em}}\frac{t}{2t-1}\text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}t=10$
3. $\text{\hspace{0.17em}}\frac{4}{3}\pi {r}^{3}\text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}r=5$
4. $\text{\hspace{0.17em}}a+ab+b\text{\hspace{0.17em}}$ for $a=11,b=-8$
5. $\text{\hspace{0.17em}}\sqrt{2{m}^{3}{n}^{2}}\text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}m=2,n=3$
1. Substitute $\text{\hspace{0.17em}}-5\text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}x.$
$\begin{array}{ccc}\hfill x+5& =& \left(-5\right)+5\hfill \\ & =& 0\hfill \end{array}$
2. Substitute 10 for $\text{\hspace{0.17em}}t.$
$\begin{array}{ccc}\hfill \frac{t}{2t-1}& =& \frac{\left(10\right)}{2\left(10\right)-1}\hfill \\ & =& \frac{10}{20-1}\hfill \\ & =& \frac{10}{19}\hfill \end{array}$
3. Substitute 5 for $\text{\hspace{0.17em}}r.$
$\begin{array}{ccc}\hfill \frac{4}{3}\pi {r}^{3}& =& \frac{4}{3}\pi {\left(5\right)}^{3}\\ & =& \frac{4}{3}\pi \left(125\right)\hfill \\ & =& \frac{500}{3}\pi \hfill \end{array}$
4. Substitute 11 for $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ and –8 for $\text{\hspace{0.17em}}b.$
$\begin{array}{ccc}\hfill a+ab+b& =& \left(11\right)+\left(11\right)\left(-8\right)+\left(-8\right)\\ & =& 11-88-8\hfill \\ & =& -85\hfill \end{array}$
5. Substitute 2 for $\text{\hspace{0.17em}}m\text{\hspace{0.17em}}$ and 3 for $\text{\hspace{0.17em}}n.$
$\begin{array}{ccc}\hfill \sqrt{2{m}^{3}{n}^{2}}& =& \sqrt{2{\left(2\right)}^{3}{\left(3\right)}^{2}}\hfill \\ & =& \sqrt{2\left(8\right)\left(9\right)}\hfill \\ & =& \sqrt{144}\hfill \\ & =& 12\hfill \end{array}$

Evaluate each expression for the given values.

1. $\text{\hspace{0.17em}}\frac{y+3}{y-3}\text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}y=5$
2. $\text{\hspace{0.17em}}7-2t\text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}t=-2$
3. $\text{\hspace{0.17em}}\frac{1}{3}\pi {r}^{2}\text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}r=11$
4. $\text{\hspace{0.17em}}{\left({p}^{2}q\right)}^{3}\text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}p=-2,q=3$
5. $\text{\hspace{0.17em}}4\left(m-n\right)-5\left(n-m\right)\text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}m=\frac{2}{3},n=\frac{1}{3}$
1. 4;
2. 11;
3. $\text{\hspace{0.17em}}\frac{121}{3}\pi$ ;
4. 1728;
5. 3

## Formulas

An equation    is a mathematical statement indicating that two expressions are equal. The expressions can be numerical or algebraic. The equation is not inherently true or false, but only a proposition. The values that make the equation true, the solutions, are found using the properties of real numbers and other results. For example, the equation $\text{\hspace{0.17em}}2x+1=7\text{\hspace{0.17em}}$ has the unique solution of 3  because when we substitute 3 for $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ in the equation, we obtain the true statement $\text{\hspace{0.17em}}2\left(3\right)+1=7.$

A formula    is an equation expressing a relationship between constant and variable quantities. Very often, the equation is a means of finding the value of one quantity (often a single variable) in terms of another or other quantities. One of the most common examples is the formula for finding the area $\text{\hspace{0.17em}}A\text{\hspace{0.17em}}$ of a circle in terms of the radius $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}$ of the circle: $\text{\hspace{0.17em}}A=\pi {r}^{2}.\text{\hspace{0.17em}}$ For any value of $\text{\hspace{0.17em}}r,$ the area $\text{\hspace{0.17em}}A\text{\hspace{0.17em}}$ can be found by evaluating the expression $\text{\hspace{0.17em}}\pi {r}^{2}.$

## Using a formula

A right circular cylinder with radius $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}$ and height $\text{\hspace{0.17em}}h\text{\hspace{0.17em}}$ has the surface area $\text{\hspace{0.17em}}S\text{\hspace{0.17em}}$ (in square units) given by the formula $\text{\hspace{0.17em}}S=2\pi r\left(r+h\right).\text{\hspace{0.17em}}$ See [link] . Find the surface area of a cylinder with radius 6 in. and height 9 in. Leave the answer in terms of $\text{\hspace{0.17em}}\pi .$

Evaluate the expression $\text{\hspace{0.17em}}2\pi r\left(r+h\right)\text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}r=6\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}h=9.$

$\begin{array}{ccc}\hfill S& =& 2\pi r\left(r+h\right)\hfill \\ & =& 2\pi \left(6\right)\left[\left(6\right)+\left(9\right)\right]\hfill \\ & =& 2\pi \left(6\right)\left(15\right)\hfill \\ & =& 180\pi \hfill \end{array}$

The surface area is $\text{\hspace{0.17em}}180\pi \text{\hspace{0.17em}}$ square inches.

A photograph with length L and width W is placed in a matte of width 8 centimeters (cm). The area of the matte (in square centimeters, or cm 2 ) is found to be $\text{\hspace{0.17em}}A=\left(L+16\right)\left(W+16\right)-L\cdot W.\text{\hspace{0.17em}}$ See [link] . Find the area of a matte for a photograph with length 32 cm and width 24 cm.

1,152 cm 2

## Simplifying algebraic expressions

Sometimes we can simplify an algebraic expression to make it easier to evaluate or to use in some other way. To do so, we use the properties of real numbers. We can use the same properties in formulas because they contain algebraic expressions.

## Simplifying algebraic expressions

Simplify each algebraic expression.

1. $3x-2y+x-3y-7$
2. $2r-5\left(3-r\right)+4$
3. $\left(4t-\frac{5}{4}s\right)-\left(\frac{2}{3}t+2s\right)$
4. $2mn-5m+3mn+n$

How look for the general solution of a trig function
stock therom F=(x2+y2) i-2xy J jaha x=a y=o y=b
root under 3-root under 2 by 5 y square
The sum of the first n terms of a certain series is 2^n-1, Show that , this series is Geometric and Find the formula of the n^th
cosA\1+sinA=secA-tanA
why two x + seven is equal to nineteen.
The numbers cannot be combined with the x
Othman
2x + 7 =19
humberto
2x +7=19. 2x=19 - 7 2x=12 x=6
Yvonne
because x is 6
SAIDI
what is the best practice that will address the issue on this topic? anyone who can help me. i'm working on my action research.
simplify each radical by removing as many factors as possible (a) √75
how is infinity bidder from undefined?
what is the value of x in 4x-2+3
give the complete question
Shanky
4x=3-2 4x=1 x=1+4 x=5 5x
Olaiya
hi can you give another equation I'd like to solve it
Daniel
what is the value of x in 4x-2+3
Olaiya
if 4x-2+3 = 0 then 4x = 2-3 4x = -1 x = -(1÷4) is the answer.
Jacob
4x-2+3 4x=-3+2 4×=-1 4×/4=-1/4
LUTHO
then x=-1/4
LUTHO
4x-2+3 4x=-3+2 4x=-1 4x÷4=-1÷4 x=-1÷4
LUTHO
A research student is working with a culture of bacteria that doubles in size every twenty minutes. The initial population count was  1350  bacteria. Rounding to five significant digits, write an exponential equation representing this situation. To the nearest whole number, what is the population size after  3  hours?
v=lbh calculate the volume if i.l=5cm, b=2cm ,h=3cm
Need help with math
Peya
can you help me on this topic of Geometry if l help you
litshani
( cosec Q _ cot Q ) whole spuare = 1_cosQ / 1+cosQ
A guy wire for a suspension bridge runs from the ground diagonally to the top of the closest pylon to make a triangle. We can use the Pythagorean Theorem to find the length of guy wire needed. The square of the distance between the wire on the ground and the pylon on the ground is 90,000 feet. The square of the height of the pylon is 160,000 feet. So, the length of the guy wire can be found by evaluating √(90000+160000). What is the length of the guy wire?
the indicated sum of a sequence is known as