# 10.5 Polar form of complex numbers  (Page 3/8)

 Page 3 / 8

## Products of complex numbers in polar form

If $\text{\hspace{0.17em}}{z}_{1}={r}_{1}\left(\mathrm{cos}\text{\hspace{0.17em}}{\theta }_{1}+i\mathrm{sin}\text{\hspace{0.17em}}{\theta }_{1}\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{z}_{2}={r}_{2}\left(\mathrm{cos}\text{\hspace{0.17em}}{\theta }_{2}+i\mathrm{sin}\text{\hspace{0.17em}}{\theta }_{2}\right),$ then the product of these numbers is given as:

$\begin{array}{l}\hfill \\ \begin{array}{l}{z}_{1}{z}_{2}={r}_{1}{r}_{2}\left[\mathrm{cos}\left({\theta }_{1}+{\theta }_{2}\right)+i\mathrm{sin}\left({\theta }_{1}+{\theta }_{2}\right)\right]\hfill \\ {z}_{1}{z}_{2}={r}_{1}{r}_{2}\text{cis}\left({\theta }_{1}+{\theta }_{2}\right)\hfill \end{array}\hfill \end{array}$

Notice that the product calls for multiplying the moduli and adding the angles.

## Finding the product of two complex numbers in polar form

Find the product of $\text{\hspace{0.17em}}{z}_{1}{z}_{2},\text{\hspace{0.17em}}$ given $\text{\hspace{0.17em}}{z}_{1}=4\left(\mathrm{cos}\left(80°\right)+i\mathrm{sin}\left(80°\right)\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{z}_{2}=2\left(\mathrm{cos}\left(145°\right)+i\mathrm{sin}\left(145°\right)\right).$

Follow the formula

$\begin{array}{l}{z}_{1}{z}_{2}=4\cdot 2\left[\mathrm{cos}\left(80°+145°\right)+i\mathrm{sin}\left(80°+145°\right)\right]\hfill \\ {z}_{1}{z}_{2}=8\left[\mathrm{cos}\left(225°\right)+i\mathrm{sin}\left(225°\right)\right]\hfill \\ {z}_{1}{z}_{2}=8\left[\mathrm{cos}\left(\frac{5\pi }{4}\right)+i\mathrm{sin}\left(\frac{5\pi }{4}\right)\right]\hfill \\ {z}_{1}{z}_{2}=8\left[-\frac{\sqrt{2}}{2}+i\left(-\frac{\sqrt{2}}{2}\right)\right]\hfill \\ {z}_{1}{z}_{2}=-4\sqrt{2}-4i\sqrt{2}\hfill \end{array}$

## Finding quotients of complex numbers in polar form

The quotient of two complex numbers in polar form is the quotient of the two moduli and the difference of the two arguments.

## Quotients of complex numbers in polar form

If $\text{\hspace{0.17em}}{z}_{1}={r}_{1}\left(\mathrm{cos}\text{\hspace{0.17em}}{\theta }_{1}+i\mathrm{sin}\text{\hspace{0.17em}}{\theta }_{1}\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{z}_{2}={r}_{2}\left(\mathrm{cos}\text{\hspace{0.17em}}{\theta }_{2}+i\mathrm{sin}\text{\hspace{0.17em}}{\theta }_{2}\right),$ then the quotient of these numbers is

$\begin{array}{l}\frac{{z}_{1}}{{z}_{2}}=\frac{{r}_{1}}{{r}_{2}}\left[\mathrm{cos}\left({\theta }_{1}-{\theta }_{2}\right)+i\mathrm{sin}\left({\theta }_{1}-{\theta }_{2}\right)\right],\text{\hspace{0.17em}}\text{\hspace{0.17em}}{z}_{2}\ne 0\\ \frac{{z}_{1}}{{z}_{2}}=\frac{{r}_{1}}{{r}_{2}}\text{cis}\left({\theta }_{1}-{\theta }_{2}\right),\text{\hspace{0.17em}}\text{\hspace{0.17em}}{z}_{2}\ne 0\text{\hspace{0.17em}}\end{array}$

Notice that the moduli are divided, and the angles are subtracted.

Given two complex numbers in polar form, find the quotient.

1. Divide $\text{\hspace{0.17em}}\frac{{r}_{1}}{{r}_{2}}.$
2. Find $\text{\hspace{0.17em}}{\theta }_{1}-{\theta }_{2}.$
3. Substitute the results into the formula: $\text{\hspace{0.17em}}z=r\left(\mathrm{cos}\text{\hspace{0.17em}}\theta +i\mathrm{sin}\text{\hspace{0.17em}}\theta \right).\text{\hspace{0.17em}}$ Replace $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}$ with $\text{\hspace{0.17em}}\frac{{r}_{1}}{{r}_{2}},\text{\hspace{0.17em}}$ and replace $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ with $\text{\hspace{0.17em}}{\theta }_{1}-{\theta }_{2}.$
4. Calculate the new trigonometric expressions and multiply through by $\text{\hspace{0.17em}}r.$

## Finding the quotient of two complex numbers

Find the quotient of $\text{\hspace{0.17em}}{z}_{1}=2\left(\mathrm{cos}\left(213°\right)+i\mathrm{sin}\left(213°\right)\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{z}_{2}=4\left(\mathrm{cos}\left(33°\right)+i\mathrm{sin}\left(33°\right)\right).$

Using the formula, we have

$\begin{array}{l}\frac{{z}_{1}}{{z}_{2}}=\frac{2}{4}\left[\mathrm{cos}\left(213°-33°\right)+i\mathrm{sin}\left(213°-33°\right)\right]\hfill \\ \frac{{z}_{1}}{{z}_{2}}=\frac{1}{2}\left[\mathrm{cos}\left(180°\right)+i\mathrm{sin}\left(180°\right)\right]\hfill \\ \frac{{z}_{1}}{{z}_{2}}=\frac{1}{2}\left[-1+0i\right]\hfill \\ \frac{{z}_{1}}{{z}_{2}}=-\frac{1}{2}+0i\hfill \\ \frac{{z}_{1}}{{z}_{2}}=-\frac{1}{2}\hfill \end{array}$

Find the product and the quotient of $\text{\hspace{0.17em}}{z}_{1}=2\sqrt{3}\left(\mathrm{cos}\left(150°\right)+i\mathrm{sin}\left(150°\right)\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{z}_{2}=2\left(\mathrm{cos}\left(30°\right)+i\mathrm{sin}\left(30°\right)\right).$

$\text{\hspace{0.17em}}{z}_{1}{z}_{2}=-4\sqrt{3};\frac{{z}_{1}}{{z}_{2}}=-\frac{\sqrt{3}}{2}+\frac{3}{2}i\text{\hspace{0.17em}}$

## Finding powers of complex numbers in polar form

Finding powers of complex numbers is greatly simplified using De Moivre’s Theorem    . It states that, for a positive integer $\text{\hspace{0.17em}}n,{z}^{n}\text{\hspace{0.17em}}$ is found by raising the modulus to the $\text{\hspace{0.17em}}n\text{th}\text{\hspace{0.17em}}$ power and multiplying the argument by $\text{\hspace{0.17em}}n.\text{\hspace{0.17em}}$ It is the standard method used in modern mathematics.

## De moivre’s theorem

If $\text{\hspace{0.17em}}z=r\left(\mathrm{cos}\text{\hspace{0.17em}}\theta +i\mathrm{sin}\text{\hspace{0.17em}}\theta \right)\text{\hspace{0.17em}}$ is a complex number, then

$\begin{array}{l}{z}^{n}={r}^{n}\left[\mathrm{cos}\left(n\theta \right)+i\mathrm{sin}\left(n\theta \right)\right]\\ {z}^{n}={r}^{n}\text{cis}\left(n\theta \right)\end{array}$

where $\text{\hspace{0.17em}}n\text{\hspace{0.17em}}$ is a positive integer.

## Evaluating an expression using de moivre’s theorem

Evaluate the expression $\text{\hspace{0.17em}}{\left(1+i\right)}^{5}\text{\hspace{0.17em}}$ using De Moivre’s Theorem.

Since De Moivre’s Theorem applies to complex numbers written in polar form, we must first write $\text{\hspace{0.17em}}\left(1+i\right)\text{\hspace{0.17em}}$ in polar form. Let us find $\text{\hspace{0.17em}}r.$

$\begin{array}{l}r=\sqrt{{x}^{2}+{y}^{2}}\hfill \\ r=\sqrt{{\left(1\right)}^{2}+{\left(1\right)}^{2}}\hfill \\ r=\sqrt{2}\hfill \end{array}$

Then we find $\text{\hspace{0.17em}}\theta .\text{\hspace{0.17em}}$ Using the formula $\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\theta =\frac{y}{x}\text{\hspace{0.17em}}$ gives

$\begin{array}{l}\mathrm{tan}\text{\hspace{0.17em}}\theta =\frac{1}{1}\hfill \\ \mathrm{tan}\text{\hspace{0.17em}}\theta =1\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\theta =\frac{\pi }{4}\hfill \end{array}$

Use De Moivre’s Theorem to evaluate the expression.

$\begin{array}{l}{\left(a+bi\right)}^{n}={r}^{n}\left[\mathrm{cos}\left(n\theta \right)+i\mathrm{sin}\left(n\theta \right)\right]\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{\left(1+i\right)}^{5}={\left(\sqrt{2}\right)}^{5}\left[\mathrm{cos}\left(5\cdot \frac{\pi }{4}\right)+i\mathrm{sin}\left(5\cdot \frac{\pi }{4}\right)\right]\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{\left(1+i\right)}^{5}=4\sqrt{2}\left[\mathrm{cos}\left(\frac{5\pi }{4}\right)+i\mathrm{sin}\left(\frac{5\pi }{4}\right)\right]\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{\left(1+i\right)}^{5}=4\sqrt{2}\left[-\frac{\sqrt{2}}{2}+i\left(-\frac{\sqrt{2}}{2}\right)\right]\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{\left(1+i\right)}^{5}=-4-4i\hfill \end{array}$

## Finding roots of complex numbers in polar form

To find the n th root of a complex number in polar form, we use the $\text{\hspace{0.17em}}n\text{th}\text{\hspace{0.17em}}$ Root Theorem or De Moivre’s Theorem    and raise the complex number to a power with a rational exponent. There are several ways to represent a formula for finding $\text{\hspace{0.17em}}n\text{th}\text{\hspace{0.17em}}$ roots of complex numbers in polar form.

## The n Th root theorem

To find the $\text{\hspace{0.17em}}n\text{th}\text{\hspace{0.17em}}$ root of a complex number in polar form, use the formula given as

${z}^{\frac{1}{n}}={r}^{\frac{1}{n}}\left[\mathrm{cos}\left(\frac{\theta }{n}+\frac{2k\pi }{n}\right)+i\mathrm{sin}\left(\frac{\theta }{n}+\frac{2k\pi }{n}\right)\right]$

where $\text{\hspace{0.17em}}k=0,\text{\hspace{0.17em}}\text{\hspace{0.17em}}1,\text{\hspace{0.17em}}\text{\hspace{0.17em}}2,\text{\hspace{0.17em}}\text{\hspace{0.17em}}3,\text{\hspace{0.17em}}.\text{\hspace{0.17em}}\text{\hspace{0.17em}}.\text{\hspace{0.17em}}\text{\hspace{0.17em}}.\text{\hspace{0.17em}}\text{\hspace{0.17em}},\text{\hspace{0.17em}}\text{\hspace{0.17em}}n-1.\text{\hspace{0.17em}}$ We add $\text{\hspace{0.17em}}\frac{2k\pi }{n}\text{\hspace{0.17em}}\text{\hspace{0.17em}}$ to $\text{\hspace{0.17em}}\frac{\theta }{n}\text{\hspace{0.17em}}$ in order to obtain the periodic roots.

#### Questions & Answers

find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
Vedant
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
SANDESH Reply
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
Rockstar Reply
tanh`(x-iy) =A+iB, find A and B
Pankaj Reply
B=Ai-itan(hx-hiy)
Rukmini
Give me the reciprocal of even number
Aliyu
The reciprocal of an even number is a proper fraction
Jamilu
what is the addition of 101011 with 101010
Branded Reply
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
archana Reply
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply

### Read also:

#### Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

 By By By Rhodes By