<< Chapter < Page | Chapter >> Page > |
$f\left(x\right)=\sqrt{6x-8}+5$
$f\left(x\right)=9+2\sqrt[3]{x}$
${f}^{\mathrm{-1}}(x)={\left(\frac{x-9}{2}\right)}^{3}$
$f\left(x\right)=3-\sqrt[3]{x}$
$f\left(x\right)=\frac{2}{x+8}$
${f}^{\mathrm{-1}}(x)={\frac{2-8x}{x}}^{}$
$f\left(x\right)=\frac{3}{x-4}$
$f\left(x\right)=\frac{x+3}{x+7}$
$\text{\hspace{0.17em}}{f}^{\mathrm{-1}}(x)=\frac{7x-3}{1-x}$
$f\left(x\right)=\frac{x-2}{x+7}$
$f\left(x\right)=\frac{3x+4}{5-4x}$
$\text{\hspace{0.17em}}{f}^{\mathrm{-1}}(x)=\frac{5x-4}{4x+3}$
$f\left(x\right)=\frac{5x+1}{2-5x}$
$f(x)={x}^{2}+2x,[\mathrm{-1},\infty )$
${f}^{\mathrm{-1}}(x)=\sqrt{x+1}-1$
$f(x)={x}^{2}+4x+1,[\mathrm{-2},\infty )$
$f(x)={x}^{2}-6x+3,[3,\infty )$
${f}^{\mathrm{-1}}(x)=\sqrt{x+6}+3$
For the following exercises, find the inverse of the function and graph both the function and its inverse.
$f(x)={x}^{2}+2,\text{\hspace{0.17em}}x\ge 0$
$f(x)=4-{x}^{2},\text{\hspace{0.17em}}x\ge 0$
${f}^{-1}(x)=\sqrt{4-x}$
$f(x)={\left(x+3\right)}^{2},\text{\hspace{0.17em}}x\ge -3$
$f(x)={\left(x-4\right)}^{2},\text{\hspace{0.17em}}x\ge 4$
${f}^{-1}(x)=\sqrt{x}+4$
$f(x)={x}^{3}+3$
$f(x)={x}^{2}+4x,\text{\hspace{0.17em}}x\ge -2$
$f(x)={x}^{2}-6x+1,\text{\hspace{0.17em}}x\ge 3$
${f}^{-1}(x)=\sqrt{x+8}+3$
$f(x)=\frac{2}{x}$
$f(x)=\frac{1}{{x}^{2}},\text{\hspace{0.17em}}x\ge 0$
${f}^{-1}(x)=\sqrt{\frac{1}{x}}$
For the following exercises, use a graph to help determine the domain of the functions.
$f(x)=\sqrt{\frac{(x+1)(x-1)}{x}}$
$f(x)=\sqrt{\frac{(x+2)(x-3)}{x-1}}$
$[-2,1)\cup [3,\infty )$
$f(x)=\sqrt{\frac{x(x+3)}{x-4}}$
$f(x)=\sqrt{\frac{{x}^{2}-x-20}{x-2}}$
$[-4,2)\cup [5,\infty )$
$f(x)=\sqrt{\frac{9-{x}^{2}}{x+4}}$
For the following exercises, use a calculator to graph the function. Then, using the graph, give three points on the graph of the inverse with y -coordinates given.
$f(x)={x}^{3}+x-2,y=0,1,2$
$f(x)={x}^{3}+8x-4,y=-1,0,1$
For the following exercises, find the inverse of the functions with $\text{\hspace{0.17em}}a,b,c\text{\hspace{0.17em}}$ positive real numbers.
$f(x)=a{x}^{3}+b$
$f(x)={x}^{2}+bx$
${f}^{-1}(x)=\sqrt{x+\frac{{b}^{2}}{4}}-\frac{b}{2}$
$f(x)=\sqrt{a{x}^{2}+b}$
$f(x)=\frac{ax+b}{x+c}$
For the following exercises, determine the function described and then use it to answer the question.
An object dropped from a height of 200 meters has a height, $\text{\hspace{0.17em}}h\left(t\right),\text{\hspace{0.17em}}$ in meters after $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ seconds have lapsed, such that $\text{\hspace{0.17em}}h(t)=200-4.9{t}^{2}.\text{\hspace{0.17em}}$ Express $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ as a function of height, $\text{\hspace{0.17em}}h,\text{\hspace{0.17em}}$ and find the time to reach a height of 50 meters.
$t(h)=\sqrt{\frac{200-h}{4.9}},\text{\hspace{0.17em}}$ 5.53 seconds
An object dropped from a height of 600 feet has a height, $\text{\hspace{0.17em}}h\left(t\right),\text{\hspace{0.17em}}$ in feet after $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ seconds have elapsed, such that $\text{\hspace{0.17em}}h(t)=600-16{t}^{2}.\text{\hspace{0.17em}}$ Express $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ as a function of height $\text{\hspace{0.17em}}h,\text{\hspace{0.17em}}$ and find the time to reach a height of 400 feet.
The volume, $\text{\hspace{0.17em}}V,\text{\hspace{0.17em}}$ of a sphere in terms of its radius, $\text{\hspace{0.17em}}r,\text{\hspace{0.17em}}$ is given by $\text{\hspace{0.17em}}V(r)=\frac{4}{3}\pi {r}^{3}.\text{\hspace{0.17em}}$ Express $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}$ as a function of $\text{\hspace{0.17em}}V,\text{\hspace{0.17em}}$ and find the radius of a sphere with volume of 200 cubic feet.
$r(V)=\sqrt[3]{\frac{3V}{4\pi}},\text{\hspace{0.17em}}$ 3.63 feet
The surface area, $\text{\hspace{0.17em}}A,\text{\hspace{0.17em}}$ of a sphere in terms of its radius, $\text{\hspace{0.17em}}r,\text{\hspace{0.17em}}$ is given by $\text{\hspace{0.17em}}A(r)=4\pi {r}^{2}.\text{\hspace{0.17em}}$ Express $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}$ as a function of $\text{\hspace{0.17em}}V,\text{\hspace{0.17em}}$ and find the radius of a sphere with a surface area of 1000 square inches.
A container holds 100 mL of a solution that is 25 mL acid. If $\text{\hspace{0.17em}}n\text{\hspace{0.17em}}$ mL of a solution that is 60% acid is added, the function $\text{\hspace{0.17em}}C(n)=\frac{25+.6n}{100+n}\text{\hspace{0.17em}}$ gives the concentration, $\text{\hspace{0.17em}}C,\text{\hspace{0.17em}}$ as a function of the number of mL added, $\text{\hspace{0.17em}}n.\text{\hspace{0.17em}}$ Express $\text{\hspace{0.17em}}n\text{\hspace{0.17em}}$ as a function of $\text{\hspace{0.17em}}C\text{\hspace{0.17em}}$ and determine the number of mL that need to be added to have a solution that is 50% acid.
$n(C)=\frac{100C-25}{.6-C},\text{\hspace{0.17em}}$ 250 mL
The period $\text{\hspace{0.17em}}T,\text{\hspace{0.17em}}$ in seconds, of a simple pendulum as a function of its length $\text{\hspace{0.17em}}l,\text{\hspace{0.17em}}$ in feet, is given by $\text{\hspace{0.17em}}T(l)=2\pi \sqrt{\frac{l}{32.2}}\text{\hspace{0.17em}}$ . Express $\text{\hspace{0.17em}}l\text{\hspace{0.17em}}$ as a function of $\text{\hspace{0.17em}}T\text{\hspace{0.17em}}$ and determine the length of a pendulum with period of 2 seconds.
The volume of a cylinder , $\text{\hspace{0.17em}}V,\text{\hspace{0.17em}}$ in terms of radius, $\text{\hspace{0.17em}}r,\text{\hspace{0.17em}}$ and height, $\text{\hspace{0.17em}}h,\text{\hspace{0.17em}}$ is given by $\text{\hspace{0.17em}}V=\pi {r}^{2}h.\text{\hspace{0.17em}}$ If a cylinder has a height of 6 meters, express the radius as a function of $\text{\hspace{0.17em}}V\text{\hspace{0.17em}}$ and find the radius of a cylinder with volume of 300 cubic meters.
$r(V)=\sqrt{\frac{V}{6\pi}},\text{\hspace{0.17em}}$ 3.99 meters
The surface area, $\text{\hspace{0.17em}}A,\text{\hspace{0.17em}}$ of a cylinder in terms of its radius, $\text{\hspace{0.17em}}r,\text{\hspace{0.17em}}$ and height, $\text{\hspace{0.17em}}h,\text{\hspace{0.17em}}$ is given by $\text{\hspace{0.17em}}A=2\pi {r}^{2}+2\pi rh.\text{\hspace{0.17em}}$ If the height of the cylinder is 4 feet, express the radius as a function of $\text{\hspace{0.17em}}V\text{\hspace{0.17em}}$ and find the radius if the surface area is 200 square feet.
The volume of a right circular cone, $\text{\hspace{0.17em}}V,\text{\hspace{0.17em}}$ in terms of its radius, $\text{\hspace{0.17em}}r,\text{\hspace{0.17em}}$ and its height, $\text{\hspace{0.17em}}h,\text{\hspace{0.17em}}$ is given by $\text{\hspace{0.17em}}V=\frac{1}{3}\pi {r}^{2}h.\text{\hspace{0.17em}}$ Express $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}$ in terms of $\text{\hspace{0.17em}}h\text{\hspace{0.17em}}$ if the height of the cone is 12 feet and find the radius of a cone with volume of 50 cubic inches.
$r(V)=\sqrt{\frac{V}{4\pi}},\text{\hspace{0.17em}}$ 1.99 inches
Consider a cone with height of 30 feet. Express the radius, $\text{\hspace{0.17em}}r,\text{\hspace{0.17em}}$ in terms of the volume, $\text{\hspace{0.17em}}V,\text{\hspace{0.17em}}$ and find the radius of a cone with volume of 1000 cubic feet.
Notification Switch
Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?