# 9.4 Sum-to-product and product-to-sum formulas  (Page 2/6)

 Page 2 / 6

Then, we divide by 2 to isolate the product of sines:

$\mathrm{sin}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\beta =\frac{1}{2}\left[\mathrm{cos}\left(\alpha -\beta \right)-\mathrm{cos}\left(\alpha +\beta \right)\right]$

Similarly we could express the product of cosines in terms of sine or derive other product-to-sum formulas.

## The product-to-sum formulas

The product-to-sum formulas are as follows:

$\begin{array}{ccc}\hfill \phantom{\rule{0.45em}{0ex}}\mathrm{cos}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\beta & =& \frac{1}{2}\left[\mathrm{cos}\left(\alpha -\beta \right)+\mathrm{cos}\left(\alpha +\beta \right)\right]\hfill \end{array}$
$\begin{array}{ccc}\hfill \mathrm{sin}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\beta & =& \frac{1}{2}\left[\mathrm{sin}\left(\alpha +\beta \right)+\mathrm{sin}\left(\alpha -\beta \right)\right]\hfill \end{array}$
$\begin{array}{ccc}\hfill \phantom{\rule{0.5em}{0ex}}\mathrm{sin}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\beta & =& \frac{1}{2}\left[\mathrm{cos}\left(\alpha -\beta \right)-\mathrm{cos}\left(\alpha +\beta \right)\right]\hfill \end{array}$
$\begin{array}{ccc}\hfill \mathrm{cos}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\beta & =& \frac{1}{2}\left[\mathrm{sin}\left(\alpha +\beta \right)-\mathrm{sin}\left(\alpha -\beta \right)\right]\hfill \end{array}$

## Express the product as a sum or difference

Write $\text{\hspace{0.17em}}\mathrm{cos}\left(3\theta \right)\text{\hspace{0.17em}}\mathrm{cos}\left(5\theta \right)\text{\hspace{0.17em}}$ as a sum or difference.

We have the product of cosines, so we begin by writing the related formula. Then we substitute the given angles and simplify.

Use the product-to-sum formula to evaluate $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\frac{11\pi }{12}\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\frac{\pi }{12}.$

$\frac{-2-\sqrt{3}}{4}$

## Expressing sums as products

Some problems require the reverse of the process we just used. The sum-to-product formulas allow us to express sums of sine or cosine as products. These formulas can be derived from the product-to-sum identities. For example, with a few substitutions, we can derive the sum-to-product identity for sine . Let $\text{\hspace{0.17em}}\frac{u+v}{2}=\alpha \text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\frac{u-v}{2}=\beta .$

Then,

$\begin{array}{ccc}\hfill \alpha +\beta & =& \frac{u+v}{2}+\frac{u-v}{2}\hfill \\ & =& \frac{2u}{2}\hfill \\ & =& u\hfill \\ \phantom{\rule{3em}{0ex}}\hfill \alpha -\beta & =& \frac{u+v}{2}-\frac{u-v}{2}\hfill \\ & =& \frac{2v}{2}\hfill \\ & =& v\hfill \end{array}$

Thus, replacing $\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\beta \text{\hspace{0.17em}}$ in the product-to-sum formula with the substitute expressions, we have

The other sum-to-product identities are derived similarly.

## Sum-to-product formulas

The sum-to-product formulas are as follows:

$\begin{array}{ccc}\hfill \phantom{\rule{0.4em}{0ex}}\mathrm{sin}\text{\hspace{0.17em}}\alpha +\mathrm{sin}\text{\hspace{0.17em}}\beta & =& 2\mathrm{sin}\left(\frac{\alpha +\beta }{2}\right)\mathrm{cos}\left(\frac{\alpha -\beta }{2}\right)\hfill \end{array}$
$\begin{array}{ccc}\hfill \phantom{\rule{0.3em}{0ex}}\mathrm{sin}\text{\hspace{0.17em}}\alpha -\mathrm{sin}\text{\hspace{0.17em}}\beta & =& 2\mathrm{sin}\left(\frac{\alpha -\beta }{2}\right)\mathrm{cos}\left(\frac{\alpha +\beta }{2}\right)\hfill \end{array}$
$\begin{array}{ccc}\hfill \phantom{\rule{0.4em}{0ex}}\mathrm{cos}\text{\hspace{0.17em}}\alpha -\mathrm{cos}\text{\hspace{0.17em}}\beta & =& -2\mathrm{sin}\left(\frac{\alpha +\beta }{2}\right)\mathrm{sin}\left(\frac{\alpha -\beta }{2}\right)\hfill \end{array}$
$\begin{array}{ccc}\hfill \mathrm{cos}\text{\hspace{0.17em}}\alpha +\mathrm{cos}\text{\hspace{0.17em}}\beta & =& 2\mathrm{cos}\left(\frac{\alpha +\beta }{2}\right)\mathrm{cos}\left(\frac{\alpha -\beta }{2}\right)\hfill \end{array}$

## Writing the difference of sines as a product

Write the following difference of sines expression as a product: $\text{\hspace{0.17em}}\mathrm{sin}\left(4\theta \right)-\mathrm{sin}\left(2\theta \right).$

We begin by writing the formula for the difference of sines.

$\mathrm{sin}\text{\hspace{0.17em}}\alpha -\mathrm{sin}\text{\hspace{0.17em}}\beta =2\mathrm{sin}\left(\frac{\alpha -\beta }{2}\right)\mathrm{cos}\left(\frac{\alpha +\beta }{2}\right)$

Substitute the values into the formula, and simplify.

$\begin{array}{ccc}\hfill \mathrm{sin}\left(4\theta \right)-\mathrm{sin}\left(2\theta \right)& =& 2\mathrm{sin}\left(\frac{4\theta -2\theta }{2}\right)\text{\hspace{0.17em}}\mathrm{cos}\left(\frac{4\theta +2\theta }{2}\right)\hfill \\ & =& 2\mathrm{sin}\left(\frac{2\theta }{2}\right)\text{\hspace{0.17em}}\mathrm{cos}\left(\frac{6\theta }{2}\right)\hfill \\ & =& 2\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}\mathrm{cos}\left(3\theta \right)\hfill \end{array}$

Use the sum-to-product formula to write the sum as a product: $\text{\hspace{0.17em}}\mathrm{sin}\left(3\theta \right)+\mathrm{sin}\left(\theta \right).$

$2\mathrm{sin}\left(2\theta \right)\mathrm{cos}\left(\theta \right)$

## Evaluating using the sum-to-product formula

Evaluate $\text{\hspace{0.17em}}\mathrm{cos}\left(15°\right)-\mathrm{cos}\left(75°\right).\text{\hspace{0.17em}}$ Check the answer with a graphing calculator.

We begin by writing the formula for the difference of cosines.

$\mathrm{cos}\text{\hspace{0.17em}}\alpha -\mathrm{cos}\text{\hspace{0.17em}}\beta =-2\text{\hspace{0.17em}}\mathrm{sin}\left(\frac{\alpha +\beta }{2}\right)\text{\hspace{0.17em}}\mathrm{sin}\left(\frac{\alpha -\beta }{2}\right)$

Then we substitute the given angles and simplify.

$\begin{array}{ccc}\hfill \mathrm{cos}\left(15°\right)-\mathrm{cos}\left(75°\right)& =& -2\mathrm{sin}\left(\frac{15°+75°}{2}\right)\text{\hspace{0.17em}}\mathrm{sin}\left(\frac{15°-75°}{2}\right)\hfill \\ & =& -2\mathrm{sin}\left(45°\right)\text{\hspace{0.17em}}\mathrm{sin}\left(-30°\right)\hfill \\ & =& -2\left(\frac{\sqrt{2}}{2}\right)\left(-\frac{1}{2}\right)\hfill \\ & =& \frac{\sqrt{2}}{2}\hfill \end{array}$

## Proving an identity

Prove the identity:

$\frac{\mathrm{cos}\left(4t\right)-\mathrm{cos}\left(2t\right)}{\mathrm{sin}\left(4t\right)+\mathrm{sin}\left(2t\right)}=-\mathrm{tan}\text{\hspace{0.17em}}t$

We will start with the left side, the more complicated side of the equation, and rewrite the expression until it matches the right side.

$\begin{array}{ccc}\hfill \frac{\mathrm{cos}\left(4t\right)-\mathrm{cos}\left(2t\right)}{\mathrm{sin}\left(4t\right)+\mathrm{sin}\left(2t\right)}& =& \frac{-2\text{\hspace{0.17em}}\mathrm{sin}\left(\frac{4t+2t}{2}\right)\text{\hspace{0.17em}}\mathrm{sin}\left(\frac{4t-2t}{2}\right)}{2\text{\hspace{0.17em}}\mathrm{sin}\left(\frac{4t+2t}{2}\right)\text{\hspace{0.17em}}\mathrm{cos}\left(\frac{4t-2t}{2}\right)}\hfill \\ & =& \frac{-2\text{\hspace{0.17em}}\mathrm{sin}\left(3t\right)\mathrm{sin}\text{\hspace{0.17em}}t}{2\text{\hspace{0.17em}}\mathrm{sin}\left(3t\right)\mathrm{cos}\text{\hspace{0.17em}}t}\hfill \\ & =& \frac{-\overline{)2}\overline{)\mathrm{sin}\left(3t\right)}\mathrm{sin}\text{\hspace{0.17em}}t}{\overline{)2}\overline{)\mathrm{sin}\left(3t\right)}\mathrm{cos}\text{\hspace{0.17em}}t}\hfill \\ & =& -\frac{\mathrm{sin}\text{\hspace{0.17em}}t}{\mathrm{cos}\text{\hspace{0.17em}}t}\hfill \\ & =& -\mathrm{tan}\text{\hspace{0.17em}}t\hfill \end{array}$

#### Questions & Answers

write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
Rockstar Reply
tanh`(x-iy) =A+iB, find A and B
Pankaj Reply
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
Branded Reply
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
archana Reply
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cos²A/cos²A=2cosec²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply

### Read also:

#### Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

 By By By Nick Swain By By By By