<< Chapter < Page Chapter >> Page >

Write the following exponential equations in logarithmic form.

  1. 3 2 = 9
  2. 5 3 = 125
  3. 2 1 = 1 2
  1. 3 2 = 9 is equivalent to log 3 ( 9 ) = 2
  2. 5 3 = 125 is equivalent to log 5 ( 125 ) = 3
  3. 2 1 = 1 2 is equivalent to log 2 ( 1 2 ) = 1
Got questions? Get instant answers now!

Evaluating logarithms

Knowing the squares, cubes, and roots of numbers allows us to evaluate many logarithms mentally. For example, consider log 2 8. We ask, “To what exponent must 2 be raised in order to get 8?” Because we already know 2 3 = 8 , it follows that log 2 8 = 3.

Now consider solving log 7 49 and log 3 27 mentally.

  • We ask, “To what exponent must 7 be raised in order to get 49?” We know 7 2 = 49. Therefore, log 7 49 = 2
  • We ask, “To what exponent must 3 be raised in order to get 27?” We know 3 3 = 27. Therefore, log 3 27 = 3

Even some seemingly more complicated logarithms can be evaluated without a calculator. For example, let’s evaluate log 2 3 4 9 mentally.

  • We ask, “To what exponent must 2 3 be raised in order to get 4 9 ? ” We know 2 2 = 4 and 3 2 = 9 , so ( 2 3 ) 2 = 4 9 . Therefore, log 2 3 ( 4 9 ) = 2.

Given a logarithm of the form y = log b ( x ) , evaluate it mentally.

  1. Rewrite the argument x as a power of b : b y = x .
  2. Use previous knowledge of powers of b identify y by asking, “To what exponent should b be raised in order to get x ?

Solving logarithms mentally

Solve y = log 4 ( 64 ) without using a calculator.

First we rewrite the logarithm in exponential form: 4 y = 64. Next, we ask, “To what exponent must 4 be raised in order to get 64?”

We know

4 3 = 64

Therefore,

log ( 64 ) 4 = 3
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Solve y = log 121 ( 11 ) without using a calculator.

log 121 ( 11 ) = 1 2 (recalling that 121 = ( 121 ) 1 2 = 11 )

Got questions? Get instant answers now!

Evaluating the logarithm of a reciprocal

Evaluate y = log 3 ( 1 27 ) without using a calculator.

First we rewrite the logarithm in exponential form: 3 y = 1 27 . Next, we ask, “To what exponent must 3 be raised in order to get 1 27 ?

We know 3 3 = 27 , but what must we do to get the reciprocal, 1 27 ? Recall from working with exponents that b a = 1 b a . We use this information to write

3 3 = 1 3 3 = 1 27

Therefore, log 3 ( 1 27 ) = 3.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Evaluate y = log 2 ( 1 32 ) without using a calculator.

log 2 ( 1 32 ) = 5

Got questions? Get instant answers now!

Using common logarithms

Sometimes we may see a logarithm written without a base. In this case, we assume that the base is 10. In other words, the expression log ( x ) means log 10 ( x ) . We call a base-10 logarithm a common logarithm . Common logarithms are used to measure the Richter Scale mentioned at the beginning of the section. Scales for measuring the brightness of stars and the pH of acids and bases also use common logarithms.

Definition of the common logarithm

A common logarithm    is a logarithm with base 10. We write log 10 ( x ) simply as log ( x ) . The common logarithm of a positive number x satisfies the following definition.

For x > 0 ,

y = log ( x )  is equivalent to  10 y = x

We read log ( x ) as, “the logarithm with base 10 of x ” or “log base 10 of x .

The logarithm y is the exponent to which 10 must be raised to get x .

Given a common logarithm of the form y = log ( x ) , evaluate it mentally.

  1. Rewrite the argument x as a power of 10 : 10 y = x .
  2. Use previous knowledge of powers of 10 to identify y by asking, “To what exponent must 10 be raised in order to get x ?

Questions & Answers

How look for the general solution of a trig function
collins Reply
stock therom F=(x2+y2) i-2xy J jaha x=a y=o y=b
Saurabh Reply
root under 3-root under 2 by 5 y square
Himanshu Reply
The sum of the first n terms of a certain series is 2^n-1, Show that , this series is Geometric and Find the formula of the n^th
amani Reply
cosA\1+sinA=secA-tanA
Aasik Reply
why two x + seven is equal to nineteen.
Kingsley Reply
The numbers cannot be combined with the x
Othman
2x + 7 =19
humberto
2x +7=19. 2x=19 - 7 2x=12 x=6
Yvonne
because x is 6
SAIDI
what is the best practice that will address the issue on this topic? anyone who can help me. i'm working on my action research.
Melanie Reply
simplify each radical by removing as many factors as possible (a) √75
Jason Reply
how is infinity bidder from undefined?
Karl Reply
what is the value of x in 4x-2+3
Vishal Reply
give the complete question
Shanky
4x=3-2 4x=1 x=1+4 x=5 5x
Olaiya
hi can you give another equation I'd like to solve it
Daniel
what is the value of x in 4x-2+3
Olaiya
if 4x-2+3 = 0 then 4x = 2-3 4x = -1 x = -(1÷4) is the answer.
Jacob
4x-2+3 4x=-3+2 4×=-1 4×/4=-1/4
LUTHO
then x=-1/4
LUTHO
4x-2+3 4x=-3+2 4x=-1 4x÷4=-1÷4 x=-1÷4
LUTHO
A research student is working with a culture of bacteria that doubles in size every twenty minutes. The initial population count was  1350  bacteria. Rounding to five significant digits, write an exponential equation representing this situation. To the nearest whole number, what is the population size after  3  hours?
David Reply
v=lbh calculate the volume if i.l=5cm, b=2cm ,h=3cm
Haidar Reply
Need help with math
Peya
can you help me on this topic of Geometry if l help you
litshani
( cosec Q _ cot Q ) whole spuare = 1_cosQ / 1+cosQ
Aarav Reply
A guy wire for a suspension bridge runs from the ground diagonally to the top of the closest pylon to make a triangle. We can use the Pythagorean Theorem to find the length of guy wire needed. The square of the distance between the wire on the ground and the pylon on the ground is 90,000 feet. The square of the height of the pylon is 160,000 feet. So, the length of the guy wire can be found by evaluating √(90000+160000). What is the length of the guy wire?
Maxwell Reply
the indicated sum of a sequence is known as
Arku Reply
Practice Key Terms 3

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask