# 6.3 Logarithmic functions  (Page 3/9)

 Page 3 / 9

Write the following exponential equations in logarithmic form.

1. ${3}^{2}=9$
2. ${5}^{3}=125$
3. ${2}^{-1}=\frac{1}{2}$
1. ${3}^{2}=9\text{\hspace{0.17em}}$ is equivalent to $\text{\hspace{0.17em}}{\mathrm{log}}_{3}\left(9\right)=2$
2. ${5}^{3}=125\text{\hspace{0.17em}}$ is equivalent to $\text{\hspace{0.17em}}{\mathrm{log}}_{5}\left(125\right)=3$
3. ${2}^{-1}=\frac{1}{2}\text{\hspace{0.17em}}$ is equivalent to $\text{\hspace{0.17em}}{\text{log}}_{2}\left(\frac{1}{2}\right)=-1$

## Evaluating logarithms

Knowing the squares, cubes, and roots of numbers allows us to evaluate many logarithms mentally. For example, consider $\text{\hspace{0.17em}}{\mathrm{log}}_{2}8.\text{\hspace{0.17em}}$ We ask, “To what exponent must $\text{\hspace{0.17em}}2\text{\hspace{0.17em}}$ be raised in order to get 8?” Because we already know $\text{\hspace{0.17em}}{2}^{3}=8,$ it follows that $\text{\hspace{0.17em}}{\mathrm{log}}_{2}8=3.$

Now consider solving $\text{\hspace{0.17em}}{\mathrm{log}}_{7}49\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{\mathrm{log}}_{3}27\text{\hspace{0.17em}}$ mentally.

• We ask, “To what exponent must 7 be raised in order to get 49?” We know $\text{\hspace{0.17em}}{7}^{2}=49.\text{\hspace{0.17em}}$ Therefore, $\text{\hspace{0.17em}}{\mathrm{log}}_{7}49=2$
• We ask, “To what exponent must 3 be raised in order to get 27?” We know $\text{\hspace{0.17em}}{3}^{3}=27.\text{\hspace{0.17em}}$ Therefore, $\text{\hspace{0.17em}}{\mathrm{log}}_{3}27=3$

Even some seemingly more complicated logarithms can be evaluated without a calculator. For example, let’s evaluate $\text{\hspace{0.17em}}{\mathrm{log}}_{\frac{2}{3}}\frac{4}{9}\text{\hspace{0.17em}}$ mentally.

• We ask, “To what exponent must $\text{\hspace{0.17em}}\frac{2}{3}\text{\hspace{0.17em}}$ be raised in order to get $\text{\hspace{0.17em}}\frac{4}{9}?\text{\hspace{0.17em}}$ ” We know $\text{\hspace{0.17em}}{2}^{2}=4\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{3}^{2}=9,$ so $\text{\hspace{0.17em}}{\left(\frac{2}{3}\right)}^{2}=\frac{4}{9}.\text{\hspace{0.17em}}$ Therefore, $\text{\hspace{0.17em}}{\mathrm{log}}_{\frac{2}{3}}\left(\frac{4}{9}\right)=2.$

Given a logarithm of the form $\text{\hspace{0.17em}}y={\mathrm{log}}_{b}\left(x\right),$ evaluate it mentally.

1. Rewrite the argument $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ as a power of $\text{\hspace{0.17em}}b:\text{\hspace{0.17em}}$ ${b}^{y}=x.\text{\hspace{0.17em}}$
2. Use previous knowledge of powers of $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ identify $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ by asking, “To what exponent should $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ be raised in order to get $\text{\hspace{0.17em}}x?$

## Solving logarithms mentally

Solve $\text{\hspace{0.17em}}y={\mathrm{log}}_{4}\left(64\right)\text{\hspace{0.17em}}$ without using a calculator.

First we rewrite the logarithm in exponential form: $\text{\hspace{0.17em}}{4}^{y}=64.\text{\hspace{0.17em}}$ Next, we ask, “To what exponent must 4 be raised in order to get 64?”

We know

${4}^{3}=64$

Therefore,

$\mathrm{log}{}_{4}\left(64\right)=3$

Solve $\text{\hspace{0.17em}}y={\mathrm{log}}_{121}\left(11\right)\text{\hspace{0.17em}}$ without using a calculator.

${\mathrm{log}}_{121}\left(11\right)=\frac{1}{2}\text{\hspace{0.17em}}$ (recalling that $\text{\hspace{0.17em}}\sqrt{121}={\left(121\right)}^{\frac{1}{2}}=11$ )

## Evaluating the logarithm of a reciprocal

Evaluate $\text{\hspace{0.17em}}y={\mathrm{log}}_{3}\left(\frac{1}{27}\right)\text{\hspace{0.17em}}$ without using a calculator.

First we rewrite the logarithm in exponential form: $\text{\hspace{0.17em}}{3}^{y}=\frac{1}{27}.\text{\hspace{0.17em}}$ Next, we ask, “To what exponent must 3 be raised in order to get $\text{\hspace{0.17em}}\frac{1}{27}?$

We know $\text{\hspace{0.17em}}{3}^{3}=27,$ but what must we do to get the reciprocal, $\text{\hspace{0.17em}}\frac{1}{27}?\text{\hspace{0.17em}}$ Recall from working with exponents that $\text{\hspace{0.17em}}{b}^{-a}=\frac{1}{{b}^{a}}.\text{\hspace{0.17em}}$ We use this information to write

$\begin{array}{l}{3}^{-3}=\frac{1}{{3}^{3}}\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}=\frac{1}{27}\hfill \end{array}$

Therefore, $\text{\hspace{0.17em}}{\mathrm{log}}_{3}\left(\frac{1}{27}\right)=-3.$

Evaluate $\text{\hspace{0.17em}}y={\mathrm{log}}_{2}\left(\frac{1}{32}\right)\text{\hspace{0.17em}}$ without using a calculator.

${\mathrm{log}}_{2}\left(\frac{1}{32}\right)=-5$

## Using common logarithms

Sometimes we may see a logarithm written without a base. In this case, we assume that the base is 10. In other words, the expression $\text{\hspace{0.17em}}\mathrm{log}\left(x\right)\text{\hspace{0.17em}}$ means $\text{\hspace{0.17em}}{\mathrm{log}}_{10}\left(x\right).\text{\hspace{0.17em}}$ We call a base-10 logarithm a common logarithm . Common logarithms are used to measure the Richter Scale mentioned at the beginning of the section. Scales for measuring the brightness of stars and the pH of acids and bases also use common logarithms.

## Definition of the common logarithm

A common logarithm    is a logarithm with base $\text{\hspace{0.17em}}10.\text{\hspace{0.17em}}$ We write $\text{\hspace{0.17em}}{\mathrm{log}}_{10}\left(x\right)\text{\hspace{0.17em}}$ simply as $\text{\hspace{0.17em}}\mathrm{log}\left(x\right).\text{\hspace{0.17em}}$ The common logarithm of a positive number $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ satisfies the following definition.

For $\text{\hspace{0.17em}}x>0,$

We read $\text{\hspace{0.17em}}\mathrm{log}\left(x\right)\text{\hspace{0.17em}}$ as, “the logarithm with base $\text{\hspace{0.17em}}10\text{\hspace{0.17em}}$ of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ ” or “log base 10 of $\text{\hspace{0.17em}}x.$

The logarithm $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ is the exponent to which $\text{\hspace{0.17em}}10\text{\hspace{0.17em}}$ must be raised to get $\text{\hspace{0.17em}}x.$

Given a common logarithm of the form $\text{\hspace{0.17em}}y=\mathrm{log}\left(x\right),$ evaluate it mentally.

1. Rewrite the argument $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ as a power of $\text{\hspace{0.17em}}10:\text{\hspace{0.17em}}$ ${10}^{y}=x.$
2. Use previous knowledge of powers of $\text{\hspace{0.17em}}10\text{\hspace{0.17em}}$ to identify $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ by asking, “To what exponent must $\text{\hspace{0.17em}}10\text{\hspace{0.17em}}$ be raised in order to get $\text{\hspace{0.17em}}x?$

#### Questions & Answers

How look for the general solution of a trig function
stock therom F=(x2+y2) i-2xy J jaha x=a y=o y=b
root under 3-root under 2 by 5 y square
The sum of the first n terms of a certain series is 2^n-1, Show that , this series is Geometric and Find the formula of the n^th
cosA\1+sinA=secA-tanA
why two x + seven is equal to nineteen.
The numbers cannot be combined with the x
Othman
2x + 7 =19
humberto
2x +7=19. 2x=19 - 7 2x=12 x=6
Yvonne
because x is 6
SAIDI
what is the best practice that will address the issue on this topic? anyone who can help me. i'm working on my action research.
simplify each radical by removing as many factors as possible (a) √75
how is infinity bidder from undefined?
what is the value of x in 4x-2+3
give the complete question
Shanky
4x=3-2 4x=1 x=1+4 x=5 5x
Olaiya
hi can you give another equation I'd like to solve it
Daniel
what is the value of x in 4x-2+3
Olaiya
if 4x-2+3 = 0 then 4x = 2-3 4x = -1 x = -(1÷4) is the answer.
Jacob
4x-2+3 4x=-3+2 4×=-1 4×/4=-1/4
LUTHO
then x=-1/4
LUTHO
4x-2+3 4x=-3+2 4x=-1 4x÷4=-1÷4 x=-1÷4
LUTHO
A research student is working with a culture of bacteria that doubles in size every twenty minutes. The initial population count was  1350  bacteria. Rounding to five significant digits, write an exponential equation representing this situation. To the nearest whole number, what is the population size after  3  hours?
v=lbh calculate the volume if i.l=5cm, b=2cm ,h=3cm
Need help with math
Peya
can you help me on this topic of Geometry if l help you
litshani
( cosec Q _ cot Q ) whole spuare = 1_cosQ / 1+cosQ
A guy wire for a suspension bridge runs from the ground diagonally to the top of the closest pylon to make a triangle. We can use the Pythagorean Theorem to find the length of guy wire needed. The square of the distance between the wire on the ground and the pylon on the ground is 90,000 feet. The square of the height of the pylon is 160,000 feet. So, the length of the guy wire can be found by evaluating √(90000+160000). What is the length of the guy wire?
the indicated sum of a sequence is known as