<< Chapter < Page Chapter >> Page >

Apparently, the difference between “the same percentage” and “the same amount” is quite significant. For exponential growth, over equal increments, the constant multiplicative rate of change resulted in doubling the output whenever the input increased by one. For linear growth, the constant additive rate of change over equal increments resulted in adding 2 to the output whenever the input was increased by one.

The general form of the exponential function is f ( x ) = a b x , where a is any nonzero number, b is a positive real number not equal to 1.

  • If b > 1 , the function grows at a rate proportional to its size.
  • If 0 < b < 1 , the function decays at a rate proportional to its size.

Let’s look at the function f ( x ) = 2 x from our example. We will create a table ( [link] ) to determine the corresponding outputs over an interval in the domain from 3 to 3.

x 3 2 1 0 1 2 3
f ( x ) = 2 x 2 3 = 1 8 2 2 = 1 4 2 1 = 1 2 2 0 = 1 2 1 = 2 2 2 = 4 2 3 = 8

Let us examine the graph of f by plotting the ordered pairs we observe on the table in [link] , and then make a few observations.

Graph of Companies A and B’s functions, which values are found in the previous table.

Let’s define the behavior of the graph of the exponential function f ( x ) = 2 x and highlight some its key characteristics.

  • the domain is ( , ) ,
  • the range is ( 0 , ) ,
  • as x , f ( x ) ,
  • as x , f ( x ) 0 ,
  • f ( x ) is always increasing,
  • the graph of f ( x ) will never touch the x -axis because base two raised to any exponent never has the result of zero.
  • y = 0 is the horizontal asymptote.
  • the y -intercept is 1.

Exponential function

For any real number x , an exponential function is a function with the form

f ( x ) = a b x

where

  • a is a non-zero real number called the initial value and
  • b is any positive real number such that b 1.
  • The domain of f is all real numbers.
  • The range of f is all positive real numbers if a > 0.
  • The range of f is all negative real numbers if a < 0.
  • The y -intercept is ( 0 , a ) , and the horizontal asymptote is y = 0.

Identifying exponential functions

Which of the following equations are not exponential functions?

  • f ( x ) = 4 3 ( x 2 )
  • g ( x ) = x 3
  • h ( x ) = ( 1 3 ) x
  • j ( x ) = ( 2 ) x

By definition, an exponential function has a constant as a base and an independent variable as an exponent. Thus, g ( x ) = x 3 does not represent an exponential function because the base is an independent variable. In fact, g ( x ) = x 3 is a power function.

Recall that the base b of an exponential function is always a positive constant, and b 1. Thus, j ( x ) = ( −2 ) x does not represent an exponential function because the base, −2 , is less than 0.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Which of the following equations represent exponential functions?

  • f ( x ) = 2 x 2 3 x + 1
  • g ( x ) = 0.875 x
  • h ( x ) = 1.75 x + 2
  • j ( x ) = 1095.6 2 x

g ( x ) = 0.875 x and j ( x ) = 1095.6 2 x represent exponential functions.

Got questions? Get instant answers now!

Evaluating exponential functions

Recall that the base of an exponential function must be a positive real number other than 1. Why do we limit the base b to positive values? To ensure that the outputs will be real numbers. Observe what happens if the base is not positive:

  • Let b = 9 and x = 1 2 . Then f ( x ) = f ( 1 2 ) = ( 9 ) 1 2 = 9 , which is not a real number.

Why do we limit the base to positive values other than 1 ? Because base 1 results in the constant function. Observe what happens if the base is 1 :

Questions & Answers

write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
Rockstar Reply
tanh`(x-iy) =A+iB, find A and B
Pankaj Reply
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
Branded Reply
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
archana Reply
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cos²A/cos²A=2cosec²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask