# 8.3 Inverse trigonometric functions  (Page 4/15)

 Page 4 / 15

## Evaluating compositions of the form f ( f−1 ( y )) and f−1 ( f ( x ))

For any trigonometric function, $\text{\hspace{0.17em}}f\left({f}^{-1}\left(y\right)\right)=y\text{\hspace{0.17em}}$ for all $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ in the proper domain for the given function. This follows from the definition of the inverse and from the fact that the range of $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ was defined to be identical to the domain of $\text{\hspace{0.17em}}{f}^{-1}.\text{\hspace{0.17em}}$ However, we have to be a little more careful with expressions of the form $\text{\hspace{0.17em}}{f}^{-1}\left(f\left(x\right)\right).$

## Compositions of a trigonometric function and its inverse

$\begin{array}{l}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\mathrm{sin}\left({\mathrm{sin}}^{-1}x\right)=x\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}-1\le x\le 1\hfill \\ \mathrm{cos}\left({\mathrm{cos}}^{-1}x\right)=x\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}-1\le x\le 1\hfill \\ \text{\hspace{0.17em}}\mathrm{tan}\left({\mathrm{tan}}^{-1}x\right)=x\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}-\infty

Is it correct that $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(\mathrm{sin}\text{\hspace{0.17em}}x\right)=x?$

No. This equation is correct if $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ belongs to the restricted domain $\text{\hspace{0.17em}}\left[-\frac{\pi }{2},\frac{\pi }{2}\right],\text{\hspace{0.17em}}$ but sine is defined for all real input values, and for $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ outside the restricted interval, the equation is not correct because its inverse always returns a value in $\text{\hspace{0.17em}}\left[-\frac{\pi }{2},\frac{\pi }{2}\right].\text{\hspace{0.17em}}$ The situation is similar for cosine and tangent and their inverses. For example, $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(\mathrm{sin}\left(\frac{3\pi }{4}\right)\right)=\frac{\pi }{4}.$

Given an expression of the form f −1 (f(θ)) where evaluate.

1. If $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ is in the restricted domain of
2. If not, then find an angle $\text{\hspace{0.17em}}\varphi \text{\hspace{0.17em}}$ within the restricted domain of $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ such that $\text{\hspace{0.17em}}f\left(\varphi \right)=f\left(\theta \right).\text{\hspace{0.17em}}$ Then $\text{\hspace{0.17em}}{f}^{-1}\left(f\left(\theta \right)\right)=\varphi .$

## Using inverse trigonometric functions

Evaluate the following:

1. ${\mathrm{sin}}^{-1}\left(\mathrm{sin}\left(\frac{\pi }{3}\right)\right)$
2. ${\mathrm{sin}}^{-1}\left(\mathrm{sin}\left(\frac{2\pi }{3}\right)\right)$
3. ${\mathrm{cos}}^{-1}\left(\mathrm{cos}\left(\frac{2\pi }{3}\right)\right)$
4. ${\mathrm{cos}}^{-1}\left(\mathrm{cos}\left(-\frac{\pi }{3}\right)\right)$
1. so $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(\mathrm{sin}\left(\frac{\pi }{3}\right)\right)=\frac{\pi }{3}.$
2. but $\text{\hspace{0.17em}}\mathrm{sin}\left(\frac{2\pi }{3}\right)=\mathrm{sin}\left(\frac{\pi }{3}\right),\text{\hspace{0.17em}}$ so $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(\mathrm{sin}\left(\frac{2\pi }{3}\right)\right)=\frac{\pi }{3}.$
3. so $\text{\hspace{0.17em}}{\mathrm{cos}}^{-1}\left(\mathrm{cos}\left(\frac{2\pi }{3}\right)\right)=\frac{2\pi }{3}.$
4. but $\text{\hspace{0.17em}}\mathrm{cos}\left(-\frac{\pi }{3}\right)=\mathrm{cos}\left(\frac{\pi }{3}\right)\text{\hspace{0.17em}}$ because cosine is an even function.
5. so $\text{\hspace{0.17em}}{\mathrm{cos}}^{-1}\left(\mathrm{cos}\left(-\frac{\pi }{3}\right)\right)=\frac{\pi }{3}.$

Evaluate $\text{\hspace{0.17em}}{\mathrm{tan}}^{-1}\left(\mathrm{tan}\left(\frac{\pi }{8}\right)\right)\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}{\mathrm{tan}}^{-1}\left(\mathrm{tan}\left(\frac{11\pi }{9}\right)\right).$

$\frac{\pi }{8};\frac{2\pi }{9}$

## Evaluating compositions of the form f−1 ( g ( x ))

Now that we can compose a trigonometric function with its inverse, we can explore how to evaluate a composition of a trigonometric function and the inverse of another trigonometric function. We will begin with compositions of the form $\text{\hspace{0.17em}}{f}^{-1}\left(g\left(x\right)\right).\text{\hspace{0.17em}}$ For special values of $\text{\hspace{0.17em}}x,$ we can exactly evaluate the inner function and then the outer, inverse function. However, we can find a more general approach by considering the relation between the two acute angles of a right triangle where one is $\text{\hspace{0.17em}}\theta ,\text{\hspace{0.17em}}$ making the other $\text{\hspace{0.17em}}\frac{\pi }{2}-\theta .$ Consider the sine and cosine of each angle of the right triangle in [link] .

Because $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta =\frac{b}{c}=\mathrm{sin}\left(\frac{\pi }{2}-\theta \right),\text{\hspace{0.17em}}$ we have $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(\mathrm{cos}\text{\hspace{0.17em}}\theta \right)=\frac{\pi }{2}-\theta \text{\hspace{0.17em}}$ if $\text{\hspace{0.17em}}0\le \theta \le \pi .\text{\hspace{0.17em}}$ If $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ is not in this domain, then we need to find another angle that has the same cosine as $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ and does belong to the restricted domain; we then subtract this angle from $\text{\hspace{0.17em}}\frac{\pi }{2}.$ Similarly, $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\theta =\frac{a}{c}=\mathrm{cos}\left(\frac{\pi }{2}-\theta \right),\text{\hspace{0.17em}}$ so $\text{\hspace{0.17em}}{\mathrm{cos}}^{-1}\left(\mathrm{sin}\text{\hspace{0.17em}}\theta \right)=\frac{\pi }{2}-\theta \text{\hspace{0.17em}}$ if $\text{\hspace{0.17em}}-\frac{\pi }{2}\le \theta \le \frac{\pi }{2}.\text{\hspace{0.17em}}$ These are just the function-cofunction relationships presented in another way.

Given functions of the form $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(\mathrm{cos}\text{\hspace{0.17em}}x\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{\mathrm{cos}}^{-1}\left(\mathrm{sin}\text{\hspace{0.17em}}x\right),\text{\hspace{0.17em}}$ evaluate them.

1. If then $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(\mathrm{cos}\text{\hspace{0.17em}}x\right)=\frac{\pi }{2}-x.$
2. If then find another angle such that $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}y=\mathrm{cos}\text{\hspace{0.17em}}x.$
${\mathrm{sin}}^{-1}\left(\mathrm{cos}\text{\hspace{0.17em}}x\right)=\frac{\pi }{2}-y$
3. If then $\text{\hspace{0.17em}}{\mathrm{cos}}^{-1}\left(\mathrm{sin}\text{\hspace{0.17em}}x\right)=\frac{\pi }{2}-x.$
4. If then find another angle such that $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}y=\mathrm{sin}\text{\hspace{0.17em}}x.$
${\mathrm{cos}}^{-1}\left(\mathrm{sin}\text{\hspace{0.17em}}x\right)=\frac{\pi }{2}-y$

root under 3-root under 2 by 5 y square
The sum of the first n terms of a certain series is 2^n-1, Show that , this series is Geometric and Find the formula of the n^th
cosA\1+sinA=secA-tanA
why two x + seven is equal to nineteen.
The numbers cannot be combined with the x
Othman
2x + 7 =19
humberto
2x +7=19. 2x=19 - 7 2x=12 x=6
Yvonne
because x is 6
SAIDI
what is the best practice that will address the issue on this topic? anyone who can help me. i'm working on my action research.
simplify each radical by removing as many factors as possible (a) √75
how is infinity bidder from undefined?
what is the value of x in 4x-2+3
give the complete question
Shanky
4x=3-2 4x=1 x=1+4 x=5 5x
Olaiya
hi can you give another equation I'd like to solve it
Daniel
what is the value of x in 4x-2+3
Olaiya
if 4x-2+3 = 0 then 4x = 2-3 4x = -1 x = -(1÷4) is the answer.
Jacob
4x-2+3 4x=-3+2 4×=-1 4×/4=-1/4
LUTHO
then x=-1/4
LUTHO
4x-2+3 4x=-3+2 4x=-1 4x÷4=-1÷4 x=-1÷4
LUTHO
A research student is working with a culture of bacteria that doubles in size every twenty minutes. The initial population count was  1350  bacteria. Rounding to five significant digits, write an exponential equation representing this situation. To the nearest whole number, what is the population size after  3  hours?
v=lbh calculate the volume if i.l=5cm, b=2cm ,h=3cm
Need help with math
Peya
can you help me on this topic of Geometry if l help you
litshani
( cosec Q _ cot Q ) whole spuare = 1_cosQ / 1+cosQ
A guy wire for a suspension bridge runs from the ground diagonally to the top of the closest pylon to make a triangle. We can use the Pythagorean Theorem to find the length of guy wire needed. The square of the distance between the wire on the ground and the pylon on the ground is 90,000 feet. The square of the height of the pylon is 160,000 feet. So, the length of the guy wire can be found by evaluating √(90000+160000). What is the length of the guy wire?
the indicated sum of a sequence is known as
how do I attempted a trig number as a starter
cos 18 ____ sin 72 evaluate