# 7.1 Angles  (Page 6/29)

 Page 6 / 29

Find an angle $\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}$ that is coterminal with an angle measuring $\text{\hspace{0.17em}}870°,$ where $\text{\hspace{0.17em}}0°\le \alpha <360°.$

$\alpha =150°$

Given an angle with measure less than $\text{\hspace{0.17em}}0°,$ find a coterminal angle having a measure between $\text{\hspace{0.17em}}0°\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}360°.$

1. Add $\text{\hspace{0.17em}}360°\text{\hspace{0.17em}}$ to the given angle.
2. If the result is still less than $\text{\hspace{0.17em}}0°,$ add $\text{\hspace{0.17em}}360°\text{\hspace{0.17em}}$ again until the result is between $\text{\hspace{0.17em}}0°\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}360°.$
3. The resulting angle is coterminal with the original angle.

## Finding an angle coterminal with an angle measuring less than $\text{\hspace{0.17em}}0°$

Show the angle with measure $\text{\hspace{0.17em}}-45°\text{\hspace{0.17em}}$ on a circle and find a positive coterminal angle $\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}$ such that $\text{\hspace{0.17em}}0°\le \alpha <360°.$

Since $\text{\hspace{0.17em}}45°\text{\hspace{0.17em}}$ is half of $\text{\hspace{0.17em}}90°,$ we can start at the positive horizontal axis and measure clockwise half of a $\text{\hspace{0.17em}}90°\text{\hspace{0.17em}}$ angle.

Because we can find coterminal angles by adding or subtracting a full rotation of $\text{\hspace{0.17em}}360°,$ we can find a positive coterminal angle here by adding $\text{\hspace{0.17em}}360°.$

$-45°+360°=315°$

We can then show the angle on a circle, as in [link] .

Find an angle $\text{\hspace{0.17em}}\beta \text{\hspace{0.17em}}$ that is coterminal with an angle measuring $\text{\hspace{0.17em}}-300°\text{\hspace{0.17em}}$ such that $\text{\hspace{0.17em}}0°\le \beta <360°.$

$\beta =60°$

## Finding coterminal angles measured in radians

We can find coterminal angles    measured in radians in much the same way as we have found them using degrees. In both cases, we find coterminal angles by adding or subtracting one or more full rotations.

Given an angle greater than $\text{\hspace{0.17em}}2\pi ,$ find a coterminal angle between 0 and $\text{\hspace{0.17em}}2\pi .$

1. Subtract $\text{\hspace{0.17em}}2\pi \text{\hspace{0.17em}}$ from the given angle.
2. If the result is still greater than $\text{\hspace{0.17em}}2\pi ,$ subtract $\text{\hspace{0.17em}}2\pi \text{\hspace{0.17em}}$ again until the result is between $\text{\hspace{0.17em}}0\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}2\pi .$
3. The resulting angle is coterminal with the original angle.

## Finding coterminal angles using radians

Find an angle $\text{\hspace{0.17em}}\beta \text{\hspace{0.17em}}$ that is coterminal with $\text{\hspace{0.17em}}\frac{19\pi }{4},$ where $\text{\hspace{0.17em}}0\le \beta <2\pi .$

When working in degrees, we found coterminal angles by adding or subtracting 360 degrees, a full rotation. Likewise, in radians, we can find coterminal angles by adding or subtracting full rotations of $\text{\hspace{0.17em}}2\pi \text{\hspace{0.17em}}$ radians:

$\begin{array}{ccc}\hfill \frac{19\pi }{4}-2\pi & =& \frac{19\pi }{4}-\frac{8\pi }{4}\hfill \\ & =& \frac{11\pi }{4}\hfill \end{array}$

The angle $\text{\hspace{0.17em}}\frac{11\pi }{4}\text{\hspace{0.17em}}$ is coterminal, but not less than $\text{\hspace{0.17em}}2\pi ,$ so we subtract another rotation.

$\begin{array}{ccc}\hfill \frac{11\pi }{4}-2\pi & =& \frac{11\pi }{4}-\frac{8\pi }{4}\hfill \\ & =& \frac{3\pi }{4}\hfill \end{array}$

The angle $\text{\hspace{0.17em}}\frac{3\pi }{4}\text{\hspace{0.17em}}$ is coterminal with $\text{\hspace{0.17em}}\frac{19\pi }{4},$ as shown in [link] .

Find an angle of measure $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ that is coterminal with an angle of measure $\text{\hspace{0.17em}}-\frac{17\pi }{6}\text{\hspace{0.17em}}$ where $\text{\hspace{0.17em}}0\le \theta <2\pi .$

$\text{\hspace{0.17em}}\frac{7\pi }{6}\text{\hspace{0.17em}}$

## Determining the length of an arc

Recall that the radian measure $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ of an angle was defined as the ratio of the arc length     $\text{\hspace{0.17em}}s\text{\hspace{0.17em}}$ of a circular arc to the radius $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}$ of the circle, $\text{\hspace{0.17em}}\theta =\frac{s}{r}.\text{\hspace{0.17em}}$ From this relationship, we can find arc length along a circle, given an angle.

## Arc length on a circle

In a circle of radius r , the length of an arc $\text{\hspace{0.17em}}s\text{\hspace{0.17em}}$ subtended by an angle with measure $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ in radians, shown in [link] , is

$s=r\theta$

Given a circle of radius $\text{\hspace{0.17em}}r,$ calculate the length $\text{\hspace{0.17em}}s\text{\hspace{0.17em}}$ of the arc subtended by a given angle of measure $\text{\hspace{0.17em}}\theta .$

1. If necessary, convert $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ to radians.
2. Multiply the radius $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}\text{\hspace{0.17em}}\theta :s=r\theta .$

## Finding the length of an arc

Assume the orbit of Mercury around the sun is a perfect circle. Mercury is approximately 36 million miles from the sun.

1. In one Earth day, Mercury completes 0.0114 of its total revolution. How many miles does it travel in one day?
2. Use your answer from part (a) to determine the radian measure for Mercury’s movement in one Earth day.
1. Let’s begin by finding the circumference of Mercury’s orbit.

Since Mercury completes 0.0114 of its total revolution in one Earth day, we can now find the distance traveled.

2. Now, we convert to radians.

x exposant 4 + 4 x exposant 3 + 8 exposant 2 + 4 x + 1 = 0
x exposent4+4x exposent3+8x exposent2+4x+1=0
HERVE
How can I solve for a domain and a codomains in a given function?
ranges
EDWIN
Thank you I mean range sir.
Oliver
proof for set theory
don't you know?
Inkoom
find to nearest one decimal place of centimeter the length of an arc of circle of radius length 12.5cm and subtending of centeral angle 1.6rad
factoring polynomial
find general solution of the Tanx=-1/root3,secx=2/root3
find general solution of the following equation
Nani
the value of 2 sin square 60 Cos 60
0.75
Lynne
0.75
Inkoom
when can I use sin, cos tan in a giving question
depending on the question
Nicholas
I am a carpenter and I have to cut and assemble a conventional roof line for a new home. The dimensions are: width 30'6" length 40'6". I want a 6 and 12 pitch. The roof is a full hip construction. Give me the L,W and height of rafters for the hip, hip jacks also the length of common jacks.
John
I want to learn the calculations
where can I get indices
I need matrices
Nasasira
hi
Raihany
Hi
Solomon
need help
Raihany
maybe provide us videos
Nasasira
Raihany
Hello
Cromwell
a
Amie
What do you mean by a
Cromwell
nothing. I accidentally press it
Amie
you guys know any app with matrices?
Khay
Ok
Cromwell
Solve the x? x=18+(24-3)=72
x-39=72 x=111
Suraj
Solve the formula for the indicated variable P=b+4a+2c, for b
Need help with this question please
b=-4ac-2c+P
Denisse
b=p-4a-2c
Suddhen
b= p - 4a - 2c
Snr
p=2(2a+C)+b
Suraj
b=p-2(2a+c)
Tapiwa
P=4a+b+2C
COLEMAN
b=P-4a-2c
COLEMAN
like Deadra, show me the step by step order of operation to alive for b
John
A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
The sequence is {1,-1,1-1.....} has