# 6.1 Exponential functions  (Page 3/16)

 Page 3 / 16
• Let $\text{\hspace{0.17em}}b=1.\text{\hspace{0.17em}}$ Then $\text{\hspace{0.17em}}f\left(x\right)={1}^{x}=1\text{\hspace{0.17em}}$ for any value of $\text{\hspace{0.17em}}x.$

To evaluate an exponential function with the form $\text{\hspace{0.17em}}f\left(x\right)={b}^{x},$ we simply substitute $x\text{\hspace{0.17em}}$ with the given value, and calculate the resulting power. For example:

Let $\text{\hspace{0.17em}}f\left(x\right)={2}^{x}.\text{\hspace{0.17em}}$ What is $f\left(3\right)?$

To evaluate an exponential function with a form other than the basic form, it is important to follow the order of operations. For example:

Let $\text{\hspace{0.17em}}f\left(x\right)=30{\left(2\right)}^{x}.\text{\hspace{0.17em}}$ What is $\text{\hspace{0.17em}}f\left(3\right)?$

Note that if the order of operations were not followed, the result would be incorrect:

$f\left(3\right)=30{\left(2\right)}^{3}\ne {60}^{3}=216,000$

## Evaluating exponential functions

Let $\text{\hspace{0.17em}}f\left(x\right)=5{\left(3\right)}^{x+1}.\text{\hspace{0.17em}}$ Evaluate $\text{\hspace{0.17em}}f\left(2\right)\text{\hspace{0.17em}}$ without using a calculator.

Follow the order of operations. Be sure to pay attention to the parentheses.

Let $f\left(x\right)=8{\left(1.2\right)}^{x-5}.\text{\hspace{0.17em}}$ Evaluate $\text{\hspace{0.17em}}f\left(3\right)\text{\hspace{0.17em}}$ using a calculator. Round to four decimal places.

$5.5556$

## Defining exponential growth

Because the output of exponential functions increases very rapidly, the term “exponential growth” is often used in everyday language to describe anything that grows or increases rapidly. However, exponential growth can be defined more precisely in a mathematical sense. If the growth rate is proportional to the amount present, the function models exponential growth.

## Exponential growth

A function that models exponential growth    grows by a rate proportional to the amount present. For any real number $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and any positive real numbers and $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ such that $\text{\hspace{0.17em}}b\ne 1,$ an exponential growth function has the form

where

• $a\text{\hspace{0.17em}}$ is the initial or starting value of the function.
• $b\text{\hspace{0.17em}}$ is the growth factor or growth multiplier per unit $\text{\hspace{0.17em}}x$ .

In more general terms, we have an exponential function , in which a constant base is raised to a variable exponent. To differentiate between linear and exponential functions, let’s consider two companies, A and B. Company A has 100 stores and expands by opening 50 new stores a year, so its growth can be represented by the function $\text{\hspace{0.17em}}A\left(x\right)=100+50x.\text{\hspace{0.17em}}$ Company B has 100 stores and expands by increasing the number of stores by 50% each year, so its growth can be represented by the function $\text{\hspace{0.17em}}B\left(x\right)=100{\left(1+0.5\right)}^{x}.$

A few years of growth for these companies are illustrated in [link] .

Year, $x$ Stores, Company A Stores, Company B
$0$ $100+50\left(0\right)=100$ $100{\left(1+0.5\right)}^{0}=100$
$1$ $100+50\left(1\right)=150$ $100{\left(1+0.5\right)}^{1}=150$
$2$ $100+50\left(2\right)=200$ $100{\left(1+0.5\right)}^{2}=225$
$3$ $100+50\left(3\right)=250$ $100{\left(1+0.5\right)}^{3}=337.5$
$x$ $A\left(x\right)=100+50x$ $B\left(x\right)=100{\left(1+0.5\right)}^{x}$

The graphs comparing the number of stores for each company over a five-year period are shown in [link] . We can see that, with exponential growth, the number of stores increases much more rapidly than with linear growth.

Notice that the domain for both functions is $\text{\hspace{0.17em}}\left[0,\infty \right),$ and the range for both functions is $\text{\hspace{0.17em}}\left[100,\infty \right).\text{\hspace{0.17em}}$ After year 1, Company B always has more stores than Company A.

Now we will turn our attention to the function representing the number of stores for Company B, $\text{\hspace{0.17em}}B\left(x\right)=100{\left(1+0.5\right)}^{x}.\text{\hspace{0.17em}}$ In this exponential function, 100 represents the initial number of stores, 0.50 represents the growth rate, and $\text{\hspace{0.17em}}1+0.5=1.5\text{\hspace{0.17em}}$ represents the growth factor. Generalizing further, we can write this function as $\text{\hspace{0.17em}}B\left(x\right)=100{\left(1.5\right)}^{x},$ where 100 is the initial value, $\text{\hspace{0.17em}}1.5\text{\hspace{0.17em}}$ is called the base , and $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ is called the exponent .

write down the polynomial function with root 1/3,2,-3 with solution
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
what is the answer to dividing negative index
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
give me the waec 2019 questions
the polar co-ordinate of the point (-1, -1)
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
tanh`(x-iy) =A+iB, find A and B
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
1+cos²A/cos²A=2cosec²A-1
test for convergence the series 1+x/2+2!/9x3