<< Chapter < Page Chapter >> Page >

Given a rational expression with repeated linear factors, decompose it.

  1. Use a variable like A , B , or C for the numerators and account for increasing powers of the denominators.
    P ( x ) Q ( x ) = A 1 ( a x + b ) + A 2 ( a x + b ) 2 +   . +  A n ( a x + b ) n
  2. Multiply both sides of the equation by the common denominator to eliminate fractions.
  3. Expand the right side of the equation and collect like terms.
  4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a system of equations to solve for the numerators.

Decomposing with repeated linear factors

Decompose the given rational expression with repeated linear factors.

x 2 + 2 x + 4 x 3 −4 x 2 + 4 x

The denominator factors are x ( x −2 ) 2 . To allow for the repeated factor of ( x −2 ) , the decomposition will include three denominators: x , ( x −2 ) , and ( x −2 ) 2 . Thus,

x 2 + 2 x + 4 x 3 −4 x 2 + 4 x = A x + B ( x −2 ) + C ( x −2 ) 2

Next, we multiply both sides by the common denominator.

x ( x −2 ) 2 [ x 2 + 2 x + 4 x ( x −2 ) 2 ] = [ A x + B ( x −2 ) + C ( x −2 ) 2 ] x ( x −2 ) 2                  x 2 + 2 x + 4 = A ( x −2 ) 2 + B x ( x −2 ) + C x

On the right side of the equation, we expand and collect like terms.

x 2 + 2 x + 4 = A ( x 2 4 x + 4 ) + B ( x 2 2 x ) + C x                        = A x 2 4 A x + 4 A + B x 2 2 B x + C x                        = ( A + B ) x 2 + ( 4 A 2 B + C ) x + 4 A

Next, we compare the coefficients of both sides. This will give the system of equations in three variables:

x 2 + 2 x + 4 = ( A + B ) x 2 + ( −4 A −2 B + C ) x + 4 A
A + B = −1 (1) −4 A −2 B + C = 2 (2) 4 A = 4 (3)

Solving for A , we have

4 A = 4    A = 1

Substitute A = 1 into equation (1).

   A + B = −1 ( 1 ) + B = −1           B = −2

Then, to solve for C , substitute the values for A and B into equation (2).

       −4 A −2 B + C = 2 −4 ( 1 ) −2 ( −2 ) + C = 2              −4 + 4 + C = 2                             C = 2

Thus,

x 2 + 2 x + 4 x 3 −4 x 2 + 4 x = 1 x 2 ( x −2 ) + 2 ( x −2 ) 2
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the partial fraction decomposition of the expression with repeated linear factors.

6 x −11 ( x −1 ) 2

6 x −1 5 ( x −1 ) 2

Got questions? Get instant answers now!

Decomposing P ( x ) Q ( x ) , Where Q(x) Has a nonrepeated irreducible quadratic factor

So far, we have performed partial fraction decomposition with expressions that have had linear factors in the denominator, and we applied numerators A , B , or C representing constants. Now we will look at an example where one of the factors in the denominator is a quadratic expression that does not factor. This is referred to as an irreducible quadratic factor. In cases like this, we use a linear numerator such as A x + B , B x + C , etc.

Decomposition of P ( x ) Q ( x ) : Q ( x ) Has a nonrepeated irreducible quadratic factor

The partial fraction decomposition of P ( x ) Q ( x ) such that Q ( x ) has a nonrepeated irreducible quadratic factor and the degree of P ( x ) is less than the degree of Q ( x ) is written as

P ( x ) Q ( x ) = A 1 x + B 1 ( a 1 x 2 + b 1 x + c 1 ) + A 2 x + B 2 ( a 2 x 2 + b 2 x + c 2 ) + + A n x + B n ( a n x 2 + b n x + c n )

The decomposition may contain more rational expressions if there are linear factors. Each linear factor will have a different constant numerator: A , B , C , and so on.

Given a rational expression where the factors of the denominator are distinct, irreducible quadratic factors, decompose it.

  1. Use variables such as A , B , or C for the constant numerators over linear factors, and linear expressions such as A 1 x + B 1 , A 2 x + B 2 , etc., for the numerators of each quadratic factor in the denominator.
    P ( x ) Q ( x ) = A a x + b + A 1 x + B 1 ( a 1 x 2 + b 1 x + c 1 ) + A 2 x + B 2 ( a 2 x 2 + b 2 x + c 2 ) + + A n x + B n ( a n x 2 + b n x + c n )
  2. Multiply both sides of the equation by the common denominator to eliminate fractions.
  3. Expand the right side of the equation and collect like terms.
  4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a system of equations to solve for the numerators.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask