# 7.1 Angles  (Page 4/29)

 Page 4 / 29

Because radian    measure is the ratio of two lengths, it is a unitless measure. For example, in [link] , suppose the radius were 2 inches and the distance along the arc were also 2 inches. When we calculate the radian measure of the angle, the “inches” cancel, and we have a result without units. Therefore, it is not necessary to write the label “radians” after a radian measure, and if we see an angle that is not labeled with “degrees” or the degree symbol, we can assume that it is a radian measure.

Considering the most basic case, the unit circle (a circle with radius 1), we know that 1 rotation equals 360 degrees, $\text{\hspace{0.17em}}360°.$ We can also track one rotation around a circle by finding the circumference, $\text{\hspace{0.17em}}C=2\pi r,$ and for the unit circle $\text{\hspace{0.17em}}C=2\pi .\text{\hspace{0.17em}}$ These two different ways to rotate around a circle give us a way to convert from degrees to radians.

## Identifying special angles measured in radians

In addition to knowing the measurements in degrees and radians of a quarter revolution, a half revolution, and a full revolution, there are other frequently encountered angles in one revolution of a circle with which we should be familiar. It is common to encounter multiples of 30, 45, 60, and 90 degrees. These values are shown in [link] . Memorizing these angles will be very useful as we study the properties associated with angles.

Now, we can list the corresponding radian values for the common measures of a circle corresponding to those listed in [link] , which are shown in [link] . Be sure you can verify each of these measures.

Find the radian measure of one-third of a full rotation.

For any circle, the arc length along such a rotation would be one-third of the circumference. We know that

So,

$\begin{array}{ccc}\hfill s& =& \frac{1}{3}\left(2\pi r\right)\hfill \\ & =\hfill & \frac{2\pi r}{3}\hfill \end{array}$

The radian measure would be the arc length divided by the radius.

Find the radian measure of three-fourths of a full rotation.

$\frac{3\pi }{2}$

## Converting between radians and degrees

Because degrees and radians both measure angles, we need to be able to convert between them. We can easily do so using a proportion where $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ is the measure of the angle in degrees and $\text{\hspace{0.17em}}{\theta }_{R}\text{\hspace{0.17em}}$ is the measure of the angle in radians.

$\frac{\theta }{180}=\frac{{\theta }_{{}^{R}}}{\pi }$

This proportion shows that the measure of angle $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ in degrees divided by 180 equals the measure of angle $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ in radians divided by $\text{\hspace{0.17em}}\pi .\text{\hspace{0.17em}}$ Or, phrased another way, degrees is to 180 as radians is to $\text{\hspace{0.17em}}\pi .$

$\frac{\text{Degrees}}{180}=\frac{\text{Radians}}{\pi }$

## Converting between radians and degrees

To convert between degrees and radians, use the proportion

$\frac{\theta }{180}=\frac{{\theta }_{R}}{\pi }$

Convert each radian measure to degrees.

1. $\frac{\pi }{6}$
2. 3

Because we are given radians and we want degrees, we should set up a proportion and solve it.

1. We use the proportion, substituting the given information.
$\begin{array}{ccc}\hfill \frac{\theta }{180}& =& \frac{{\theta }_{R}}{\pi }\hfill \\ \hfill \frac{\theta }{180}& =& \frac{\frac{\pi }{6}}{\pi }\hfill \\ \hfill \theta & =& \frac{180}{6}\hfill \\ \hfill \theta & =& 30°\hfill \end{array}$
2. We use the proportion, substituting the given information.
$\begin{array}{ccc}\hfill \frac{\theta }{180}& =& \frac{{\theta }_{{}^{R}}}{\pi }\hfill \\ \hfill \frac{\theta }{180}& =& \frac{3}{\pi }\hfill \\ \hfill \theta & =& \frac{3\left(180\right)}{\pi }\hfill \\ \hfill \theta & \approx & 172°\hfill \end{array}$

Convert $\text{\hspace{0.17em}}-\frac{3\pi }{4}\text{\hspace{0.17em}}$ radians to degrees.

$-135°$

x exposant 4 + 4 x exposant 3 + 8 exposant 2 + 4 x + 1 = 0
x exposent4+4x exposent3+8x exposent2+4x+1=0
HERVE
How can I solve for a domain and a codomains in a given function?
ranges
EDWIN
Thank you I mean range sir.
Oliver
proof for set theory
don't you know?
Inkoom
find to nearest one decimal place of centimeter the length of an arc of circle of radius length 12.5cm and subtending of centeral angle 1.6rad
factoring polynomial
find general solution of the Tanx=-1/root3,secx=2/root3
find general solution of the following equation
Nani
the value of 2 sin square 60 Cos 60
0.75
Lynne
0.75
Inkoom
when can I use sin, cos tan in a giving question
depending on the question
Nicholas
I am a carpenter and I have to cut and assemble a conventional roof line for a new home. The dimensions are: width 30'6" length 40'6". I want a 6 and 12 pitch. The roof is a full hip construction. Give me the L,W and height of rafters for the hip, hip jacks also the length of common jacks.
John
I want to learn the calculations
where can I get indices
I need matrices
Nasasira
hi
Raihany
Hi
Solomon
need help
Raihany
maybe provide us videos
Nasasira
Raihany
Hello
Cromwell
a
Amie
What do you mean by a
Cromwell
nothing. I accidentally press it
Amie
you guys know any app with matrices?
Khay
Ok
Cromwell
Solve the x? x=18+(24-3)=72
x-39=72 x=111
Suraj
Solve the formula for the indicated variable P=b+4a+2c, for b
Need help with this question please
b=-4ac-2c+P
Denisse
b=p-4a-2c
Suddhen
b= p - 4a - 2c
Snr
p=2(2a+C)+b
Suraj
b=p-2(2a+c)
Tapiwa
P=4a+b+2C
COLEMAN
b=P-4a-2c
COLEMAN
like Deadra, show me the step by step order of operation to alive for b
John
A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
The sequence is {1,-1,1-1.....} has