<< Chapter < Page Chapter >> Page >
log b ( 6 x y ) = log b ( 6 x ) log b y = log b 6 + log b x log b y

We can use the power rule to expand logarithmic expressions involving negative and fractional exponents. Here is an alternate proof of the quotient rule for logarithms using the fact that a reciprocal is a negative power:

log b ( A C ) = log b ( A C 1 ) = log b ( A ) + log b ( C 1 ) = log b A + ( 1 ) log b C = log b A log b C

We can also apply the product rule to express a sum or difference of logarithms as the logarithm of a product.

With practice, we can look at a logarithmic expression and expand it mentally, writing the final answer. Remember, however, that we can only do this with products, quotients, powers, and roots—never with addition or subtraction inside the argument of the logarithm.

Expanding logarithms using product, quotient, and power rules

Rewrite ln ( x 4 y 7 ) as a sum or difference of logs.

First, because we have a quotient of two expressions, we can use the quotient rule:

ln ( x 4 y 7 ) = ln ( x 4 y ) ln ( 7 )

Then seeing the product in the first term, we use the product rule:

ln ( x 4 y ) ln ( 7 ) = ln ( x 4 ) + ln ( y ) ln ( 7 )

Finally, we use the power rule on the first term:

ln ( x 4 ) + ln ( y ) ln ( 7 ) = 4 ln ( x ) + ln ( y ) ln ( 7 )
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Expand log ( x 2 y 3 z 4 ) .

2 log x + 3 log y 4 log z

Got questions? Get instant answers now!

Using the power rule for logarithms to simplify the logarithm of a radical expression

Expand log ( x ) .

log ( x ) = log x ( 1 2 ) = 1 2 log x
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Expand ln ( x 2 3 ) .

2 3 ln x

Got questions? Get instant answers now!

Can we expand ln ( x 2 + y 2 ) ?

No. There is no way to expand the logarithm of a sum or difference inside the argument of the logarithm.

Expanding complex logarithmic expressions

Expand log 6 ( 64 x 3 ( 4 x + 1 ) ( 2 x 1 ) ) .

We can expand by applying the Product and Quotient Rules.

log 6 ( 64 x 3 ( 4 x + 1 ) ( 2 x 1 ) ) = log 6 64 + log 6 x 3 + log 6 ( 4 x + 1 ) log 6 ( 2 x 1 ) Apply the Quotient Rule . = log 6 2 6 + log 6 x 3 + log 6 ( 4 x + 1 ) log 6 ( 2 x 1 ) Simplify by writing  64 as 2 6 . = 6 log 6 2 + 3 log 6 x + log 6 ( 4 x + 1 ) log 6 ( 2 x 1 ) Apply the Power Rule .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Expand ln ( ( x 1 ) ( 2 x + 1 ) 2 ( x 2 9 ) ) .

1 2 ln ( x 1 ) + ln ( 2 x + 1 ) ln ( x + 3 ) ln ( x 3 )

Got questions? Get instant answers now!

Condensing logarithmic expressions

We can use the rules of logarithms we just learned to condense sums, differences, and products with the same base as a single logarithm. It is important to remember that the logarithms must have the same base to be combined. We will learn later how to change the base of any logarithm before condensing.

Given a sum, difference, or product of logarithms with the same base, write an equivalent expression as a single logarithm.

  1. Apply the power property first. Identify terms that are products of factors and a logarithm, and rewrite each as the logarithm of a power.
  2. Next apply the product property. Rewrite sums of logarithms as the logarithm of a product.
  3. Apply the quotient property last. Rewrite differences of logarithms as the logarithm of a quotient.

Using the product and quotient rules to combine logarithms

Write log 3 ( 5 ) + log 3 ( 8 ) log 3 ( 2 ) as a single logarithm.

Using the product and quotient rules

log 3 ( 5 ) + log 3 ( 8 ) = log 3 ( 5 8 ) = log 3 ( 40 )

This reduces our original expression to

log 3 ( 40 ) log 3 ( 2 )

Then, using the quotient rule

log 3 ( 40 ) log 3 ( 2 ) = log 3 ( 40 2 ) = log 3 ( 20 )
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Condense log 3 log 4 + log 5 log 6.

log ( 3 5 4 6 ) ; can also be written log ( 5 8 ) by reducing the fraction to lowest terms.

Got questions? Get instant answers now!

Questions & Answers

find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
Vedant
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
SANDESH Reply
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
Rockstar Reply
tanh`(x-iy) =A+iB, find A and B
Pankaj Reply
B=Ai-itan(hx-hiy)
Rukmini
Give me the reciprocal of even number
Aliyu
The reciprocal of an even number is a proper fraction
Jamilu
what is the addition of 101011 with 101010
Branded Reply
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
archana Reply
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask