# 1.1 Real numbers: algebra essentials  (Page 5/35)

 Page 5 / 35

## Using the order of operations

Use the order of operations to evaluate each of the following expressions.

1. ${\left(3\cdot 2\right)}^{2}-4\left(6+2\right)$
2. $\frac{{5}^{2}-4}{7}-\sqrt{11-2}$
3. $6-|5-8|+3\left(4-1\right)$
4. $\frac{14-3\cdot 2}{2\cdot 5-{3}^{2}}$
5. $7\left(5\cdot 3\right)-2\left[\left(6-3\right)-{4}^{2}\right]+1$

1. Note that in the first step, the radical is treated as a grouping symbol, like parentheses. Also, in the third step, the fraction bar is considered a grouping symbol so the numerator is considered to be grouped.

2. In this example, the fraction bar separates the numerator and denominator, which we simplify separately until the last step.

Use the order of operations to evaluate each of the following expressions.

1. $\sqrt{{5}^{2}-{4}^{2}}+7{\left(5-4\right)}^{2}$
2. $1+\frac{7\cdot 5-8\cdot 4}{9-6}$
3. $|1.8-4.3|+0.4\sqrt{15+10}$
4. $\frac{1}{2}\left[5\cdot {3}^{2}-{7}^{2}\right]+\frac{1}{3}\cdot {9}^{2}$
5. $\left[{\left(3-8\right)}^{2}-4\right]-\left(3-8\right)$
1. 10
2. 2
3. 4.5
4. 25
5. 26

## Using properties of real numbers

For some activities we perform, the order of certain operations does not matter, but the order of other operations does. For example, it does not make a difference if we put on the right shoe before the left or vice-versa. However, it does matter whether we put on shoes or socks first. The same thing is true for operations in mathematics.

## Commutative properties

The commutative property of addition    states that numbers may be added in any order without affecting the sum.

$a+b=b+a$

We can better see this relationship when using real numbers.

$\begin{array}{lllll}\left(-2\right)+7=5\hfill & \hfill & \text{and}\hfill & \hfill & 7+\left(-2\right)=5\hfill \end{array}$

Similarly, the commutative property of multiplication    states that numbers may be multiplied in any order without affecting the product.

$a\cdot b=b\cdot a$

Again, consider an example with real numbers.

$\begin{array}{ccccc}\left(-11\right)\cdot \left(-4\right)=44& & \text{and}& & \left(-4\right)\cdot \left(-11\right)=44\end{array}$

It is important to note that neither subtraction nor division is commutative. For example, $\text{\hspace{0.17em}}17-5\text{\hspace{0.17em}}$ is not the same as $\text{\hspace{0.17em}}5-17.\text{\hspace{0.17em}}$ Similarly, $\text{\hspace{0.17em}}20÷5\ne 5÷20.$

## Associative properties

The associative property of multiplication    tells us that it does not matter how we group numbers when multiplying. We can move the grouping symbols to make the calculation easier, and the product remains the same.

$a\left(bc\right)=\left(ab\right)c$

Consider this example.

$\begin{array}{ccccc}\left(3\cdot 4\right)\cdot 5=60& & \text{and}& & 3\cdot \left(4\cdot 5\right)=60\end{array}$

The associative property of addition    tells us that numbers may be grouped differently without affecting the sum.

$a+\left(b+c\right)=\left(a+b\right)+c$

This property can be especially helpful when dealing with negative integers. Consider this example.

$\begin{array}{ccccc}\left[15+\left(-9\right)\right]+23=29& & \text{and}& & 15+\left[\left(-9\right)+23\right]=29\end{array}$

Are subtraction and division associative? Review these examples.

what is the answer to dividing negative index
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
give me the waec 2019 questions
the polar co-ordinate of the point (-1, -1)
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
tanh`(x-iy) =A+iB, find A and B
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
1+cos²A/cos²A=2cosec²A-1
test for convergence the series 1+x/2+2!/9x3
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
Ajith
exponential series
Naveen
yeah
Morosi
prime number?
Morosi
what is subgroup
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1