<< Chapter < Page Chapter >> Page >

Using the order of operations

Use the order of operations to evaluate each of the following expressions.

  1. ( 3 2 ) 2 4 ( 6 + 2 )
  2. 5 2 4 7 11 2
  3. 6 | 5 8 | + 3 ( 4 1 )
  4. 14 3 2 2 5 3 2
  5. 7 ( 5 3 ) 2 [ ( 6 3 ) 4 2 ] + 1

  1. ( 3 2 ) 2 4 ( 6 + 2 ) = ( 6 ) 2 4 ( 8 ) Simplify parentheses = 36 4 ( 8 ) Simplify exponent = 36 32 Simplify multiplication = 4 Simplify subtraction

  2. 5 2 4 7 11 2 = 5 2 4 7 9 Simplify grouping symbols (radical) = 5 2 4 7 3 Simplify radical = 25 4 7 3 Simplify exponent = 21 7 3 Simplify subtraction in numerator = 3 3 Simplify division = 0 Simplify subtraction

    Note that in the first step, the radical is treated as a grouping symbol, like parentheses. Also, in the third step, the fraction bar is considered a grouping symbol so the numerator is considered to be grouped.


  3. 6 | 5 8 | + 3 ( 4 1 ) = 6 | −3 | + 3 ( 3 ) Simplify inside grouping symbols = 6 3 + 3 ( 3 ) Simplify absolute value = 6 3 + 9 Simplify multiplication = 3 + 9 Simplify subtraction = 12 Simplify addition

  4. 14 3 2 2 5 3 2 = 14 3 2 2 5 9 Simplify exponent = 14 6 10 9 Simplify products = 8 1 Simplify differences = 8 Simplify quotient

    In this example, the fraction bar separates the numerator and denominator, which we simplify separately until the last step.


  5. 7 ( 5 3 ) 2 [ ( 6 3 ) 4 2 ] + 1 = 7 ( 15 ) 2 [ ( 3 ) 4 2 ] + 1 Simplify inside parentheses = 7 ( 15 ) 2 ( 3 16 ) + 1 Simplify exponent = 7 ( 15 ) 2 ( −13 ) + 1 Subtract = 105 + 26 + 1 Multiply = 132 Add
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use the order of operations to evaluate each of the following expressions.

  1. 5 2 4 2 + 7 ( 5 4 ) 2
  2. 1 + 7 5 8 4 9 6
  3. | 1.8 4.3 | + 0.4 15 + 10
  4. 1 2 [ 5 3 2 7 2 ] + 1 3 9 2
  5. [ ( 3 8 ) 2 4 ] ( 3 8 )
  1. 10
  2. 2
  3. 4.5
  4. 25
  5. 26
Got questions? Get instant answers now!

Using properties of real numbers

For some activities we perform, the order of certain operations does not matter, but the order of other operations does. For example, it does not make a difference if we put on the right shoe before the left or vice-versa. However, it does matter whether we put on shoes or socks first. The same thing is true for operations in mathematics.

Commutative properties

The commutative property of addition    states that numbers may be added in any order without affecting the sum.

a + b = b + a

We can better see this relationship when using real numbers.

( −2 ) + 7 = 5 and 7 + ( −2 ) = 5

Similarly, the commutative property of multiplication    states that numbers may be multiplied in any order without affecting the product.

a b = b a

Again, consider an example with real numbers.

( −11 ) ( −4 ) = 44 and ( −4 ) ( −11 ) = 44

It is important to note that neither subtraction nor division is commutative. For example, 17 5 is not the same as 5 17. Similarly, 20 ÷ 5 5 ÷ 20.

Associative properties

The associative property of multiplication    tells us that it does not matter how we group numbers when multiplying. We can move the grouping symbols to make the calculation easier, and the product remains the same.

a ( b c ) = ( a b ) c

Consider this example.

( 3 4 ) 5 = 60 and 3 ( 4 5 ) = 60

The associative property of addition    tells us that numbers may be grouped differently without affecting the sum.

a + ( b + c ) = ( a + b ) + c

This property can be especially helpful when dealing with negative integers. Consider this example.

[ 15 + ( −9 ) ] + 23 = 29 and 15 + [ ( −9 ) + 23 ] = 29

Are subtraction and division associative? Review these examples.

8 ( 3 15 ) = ? ( 8 3 ) 15 64 ÷ ( 8 ÷ 4 ) = ? ( 64 ÷ 8 ) ÷ 4 8 ( 12 ) = 5 15   64 ÷ 2 = ?   8 ÷ 4 20   20 10   32 2

Questions & Answers

A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
Kaitlyn Reply
The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Eseka
Please prove it
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
Arleathia Reply
7.5 and 37.5
Nando
find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
Vedant
the 28th term is 175
Nando
192
Kenneth
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
SANDESH Reply
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask